Thermodynamic stability, critical points, and phase transitions in
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 3, pp. 512-523 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the stability of the minimum of the thermodynamic potential treated as a functional of partial densities or correlation functions. We show that the loss of stability is related to critical points of thermodynamic functions. Curves or points of phase transitions of the first kind are determined by comparing the thermodynamic potentials of different phases, and the condition for loss of stability with respect to density fluctuations can be taken as the phase transition criterion only approximately. Phase transitions of the second kind are related to the loss of stability with respect to the pair correlation fluctuations.
Keywords: partial distribution, diagonalization, extremum stability, critical point.
Mots-clés : phase transition
@article{TMF_2008_155_3_a8,
     author = {\'E. A. Arinstein},
     title = {Thermodynamic stability, critical points, and phase transitions in},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {512--523},
     year = {2008},
     volume = {155},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a8/}
}
TY  - JOUR
AU  - É. A. Arinstein
TI  - Thermodynamic stability, critical points, and phase transitions in
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 512
EP  - 523
VL  - 155
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a8/
LA  - ru
ID  - TMF_2008_155_3_a8
ER  - 
%0 Journal Article
%A É. A. Arinstein
%T Thermodynamic stability, critical points, and phase transitions in
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 512-523
%V 155
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a8/
%G ru
%F TMF_2008_155_3_a8
É. A. Arinstein. Thermodynamic stability, critical points, and phase transitions in. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 3, pp. 512-523. http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a8/

[1] K. Khuang, Statisticheskaya mekhanika, Mir, M., 1966 | MR | Zbl

[2] B. T. Geilikman, Statisticheskaya teoriya fazovykh prevraschenii, GITTL, M., 1954 | MR

[3] E. A. Arinshtein, TMF, 124:1 (2000), 136–147 ; 143:1 (2005), 150–160 | DOI | MR | Zbl | DOI | MR | Zbl

[4] E. A. Arinshtein, R. M. Ganopolskii, TMF, 131:2 (2002), 278–287 | DOI | MR | Zbl

[5] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, t. 1, Mir, M., 1977 | MR | MR | Zbl

[6] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. V. Statisticheskaya fizika, Nauka, M., 1976 | MR | MR | Zbl

[7] K. Krokston, Fizika zhidkogo sostoyaniya. Statisticheskoe vvedenie, Mir, M., 1978

[8] E. A. Arinshtein, TMF, 148:2 (2006), 323–336 | DOI | MR | Zbl

[9] E. A. Arinshtein, TMF, 151:1 (2007), 155–171 | DOI | MR | Zbl

[10] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR | MR | Zbl

[11] E. A. Arinshtein, TMF, 138:1 (2004), 127–138 | DOI