@article{TMF_2008_155_3_a5,
author = {M. Saniga and M. Planat and P. Pracna},
title = {Projective ring line encompassing two-qubits},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {463--473},
year = {2008},
volume = {155},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a5/}
}
M. Saniga; M. Planat; P. Pracna. Projective ring line encompassing two-qubits. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 3, pp. 463-473. http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a5/
[1] A. Blunck, H. Havlicek, Abh. Math. Sem. Univ. Hamburg, 70 (2000), 287–299 | DOI | MR | Zbl
[2] A. Blunck, H. Havlicek, Math. Pannon., 14:1 (2003), 113–127 | MR | Zbl
[3] A. Blunck, H. Havlicek, Aequationes Math., 69 (2005), 146–163 | DOI | MR | Zbl
[4] H. Havlicek, Quad. Sem. Matem. di Brescia, 11 (2006), 1–63; http://www.geometrie.tuwien.ac.at/havlicek/pdf/dd-laguerre.pdf
[5] A. Herzer, “Chain geometries”, Handbook of Incidence Geometry, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 781–842 | DOI | MR | Zbl
[6] M. Saniga, M. Planat, M. R. Kibler, P. Pracna, Chaos Solitons Fractals, 33 (2007), 1095–1102 ; arXiv: math.AG/0605301 | DOI | MR | Zbl
[7] M. Saniga, M. Planat, Chaos Soliton Fractals, 37 (2008), 337–345 ; arXiv: math.AG/0604307 | DOI | MR | Zbl
[8] M. Saniga, M. Plana, TMF, 151:1 (2007), 44–53 ; arXiv: quant-ph/0603051 | DOI | MR | Zbl
[9] M. Saniga, M. Plana, M. Minarovich, TMF, 151:2 (2007), 219–227 ; arXiv: quant-ph/0603206 | DOI | MR
[10] M. Planat, M. Saniga, M. R. Kibler, SIGMA, 2 (2006), Paper 066, 14 pp. ; arXiv: quant-ph/0605239 | DOI | MR | Zbl
[11] M. Saniga, M. Planat, P. Pracna, A classification of the projective lines over small rings II. Non-commutative case, arXiv: math.AG/0606500
[12] J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, Reading, MA, 1967 | MR | Zbl
[13] B. R. McDonald, Finite Rings with Identity, Dekker, New York, 1974 | MR | Zbl
[14] R. Raghavendran, Compos. Math., 21 (1969), 195–229 | MR | Zbl
[15] C. Nöbauer, The book of the rings, part I, 2000; http://www.algebra.uni-linz.ac.at/~noebsi/ pub/rings.ps
[16] H. Van Maldeghem, Generalized Polygons, Birkhäuser, Basel, 1998 | MR | Zbl
[17] B. Polster, H. Van Maldeghem, J. Combin. Theory Ser. A, 96:1 (2001), 162–179 | DOI | MR | Zbl
[18] B. Polster, A Geometrical Picture Book, Springer, New York, 1998 | MR | Zbl
[19] B. Polster, Bull. Belg. Math. Soc. Simon Stevin, 5 (1998), 417–425 | MR | Zbl
[20] B. Polster, A. E. Schroth, H. Van Maldeghem, Math. Intelligencer, 23 (2001), 33–47 | DOI | MR
[21] J. Lawrence, Č. Brukner, A. Zeilinger, Phys. Rev. A, 65 (2002), 032320 | DOI
[22] S. E. Payne, J. A. Thas, Finite Generalized Quadrangles, Pitman, Boston, London, Melbourne, 1984 | MR | Zbl
[23] H. Havlicek, Mitt. Math. Ges. Hamburg, 26 (2007), 75–94 ; http://www.geometrie.tuwien.ac.at/havlicek/pub/pentazyklisch.pdf | MR | Zbl
[24] M. Saniga, M. Planat, Adv. Studies Theor. Phys., 1:1–4 (2007), 1–4 ; arXiv: quant-ph/0612179 | MR | Zbl
[25] M. Planat, M. Saniga, Quantum Inf. Comput., 8:1–2 (2008), 127–146 ; arXiv: quant-ph/0701211 | MR | Zbl