Coherent states for the Hartmann potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 3, pp. 439-452 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain the coherent states for a particle in the noncentral Hartmann potential by transforming the problem into four isotropic oscillators evolving in a parametric time. We use path integration over the holomorphic coordinates to find the quantum states for these oscillators. The decomposition of the transition amplitudes gives the coherent states and their parametric-time evolution for the particle in the Hartmann potential. We also derive the coherent states in the parabolic coordinates by considering the transition amplitudes between the coherent states and eigenstates in the configuration space.
Keywords: Hartmann potential, noncentral potential, coherent state in parametric time, path integral.
@article{TMF_2008_155_3_a3,
     author = {N. Kandirmaz and N. \"Unal},
     title = {Coherent states for {the~Hartmann} potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {439--452},
     year = {2008},
     volume = {155},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a3/}
}
TY  - JOUR
AU  - N. Kandirmaz
AU  - N. Ünal
TI  - Coherent states for the Hartmann potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 439
EP  - 452
VL  - 155
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a3/
LA  - ru
ID  - TMF_2008_155_3_a3
ER  - 
%0 Journal Article
%A N. Kandirmaz
%A N. Ünal
%T Coherent states for the Hartmann potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 439-452
%V 155
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a3/
%G ru
%F TMF_2008_155_3_a3
N. Kandirmaz; N. Ünal. Coherent states for the Hartmann potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 3, pp. 439-452. http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a3/

[1] E. Schrödinger, Naturwissenschaften, 14:28 (1926), 664–666 | DOI | Zbl

[2] R. J. Glauber, Phys. Rev. Lett., 10:3 (1963), 84–86 | DOI | MR

[3] M. M. Nieto, L. M. Simmons Jr., Phys. Rev. Lett., 41:4 (1978), 207–210 | DOI

[4] L. S. Brown, Amer. J. Phys., 41:4 (1973), 525–530 | DOI

[5] D. Bhaumik, B. Dutta-Roy, G. Ghosh, J. Phys. A, 19:8 (1986), 1355–1364 | DOI | MR

[6] A. ten Wolde, L. D. Noordam, A. Lagendijk, H. B. van Linden van den Heuvell, Phys. Rev. Lett., 61:18 (1988), 2099–2101 | DOI

[7] G. Goldstein, Klassicheskaya mekhanika, Nauka, M., 1975 | MR | MR

[8] P. Kustaanheimo, E. Stiefel, J. Reine Angew. Math., 218 (1965), 204–219 | MR | Zbl

[9] I. H. Duru, H. Kleinert, Phys. Lett. B, 84:2 (1979), 185–188 ; Fortschr. Phys., 30:8 (1982), 401–435 | DOI | MR | DOI | MR

[10] T. Toyoda, S. Wakayama, Phys. Rev. A, 59:2 (1999), 1021–1024 | DOI | MR

[11] N. Ünal, Found. Phys., 28:5 (1998), 755–762 | DOI | MR

[12] N. Ünal, Phys. Rev. A, 63:5 (2001), 2105 ; Turk. J. Phys., 24:3 (2000), 463–472 | DOI

[13] N. Ünal, Canad. J. Phys., 80 (2002), 875–881 | DOI

[14] N. Ünal, “Path integration and coherent states for the 5D hydrogen atom”, Fluctuating Paths and Fields, Festschrift dedicated to Hagen Kleinert on the occasion of his 60th birthday, eds. W. Janke, A. Pelster, H.-J. Schmidt, World Scientific, River Edge, NJ, 2001, 73–81 | DOI | MR

[15] T. Toyoda, S. Wakayama, Phys. Rev. A, 64:3 (2001), 2110 | DOI

[16] H. Hartmann, Theor. Chim. Acta, 24:2–3 (1972), 201–206 | DOI

[17] B. P. Mandal, Internat. J. Modern Phys. A, 15:8 (2000), 1225–1234 | DOI | MR | Zbl

[18] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1971 | MR | MR | Zbl

[19] Gh. E. Drägänascu, C. Campigotto, M. Kibler, Phys. Lett. A, 170:5 (1992), 339–343 | DOI | MR