Construction of regular solutions of Schrödinger and Faddeev
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 3, pp. 415-438 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the six-dimensional Schrödinger and Faddeev equations for a three-particle system with central pairwise interactions more general than the Coulomb interactions. The regular general and particular physical solutions of such equations are represented by infinite series in integer powers of the distance from one of the particles to the center of mass of the other two particles and in some functions of the other three-particle coordinates. Constructing such functions in the angular bases formed by spherical and bispherical harmonics or by symmetrized Wigner $D$-functions reduces to solving simple algebraic recurrence relations. For the projections of physical solutions on the angular basis functions, we introduce the boundary conditions in the linear three-particle configuration limit.
Keywords: three-particle problem, differential Schrödinger equation, differential Faddeev equation, regular solution, linear three-particle configuration.
@article{TMF_2008_155_3_a2,
     author = {V. V. Pupyshev},
     title = {Construction of regular solutions of {Schr\"odinger} and {Faddeev}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {415--438},
     year = {2008},
     volume = {155},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a2/}
}
TY  - JOUR
AU  - V. V. Pupyshev
TI  - Construction of regular solutions of Schrödinger and Faddeev
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 415
EP  - 438
VL  - 155
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a2/
LA  - ru
ID  - TMF_2008_155_3_a2
ER  - 
%0 Journal Article
%A V. V. Pupyshev
%T Construction of regular solutions of Schrödinger and Faddeev
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 415-438
%V 155
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a2/
%G ru
%F TMF_2008_155_3_a2
V. V. Pupyshev. Construction of regular solutions of Schrödinger and Faddeev. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 3, pp. 415-438. http://geodesic.mathdoc.fr/item/TMF_2008_155_3_a2/

[1] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | Zbl

[2] V. V. Kostrykin, A. A. Kvitsinsky, S. P. Merkuriev, Few-Body Systems, 6:2 (1989), 97–113 | DOI | MR

[3] A. A. Kvitsinskii, V. V. Kostrykin, S. P. Merkurev, EChAYa, 21:6 (1990), 1301–1359 | MR

[4] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, M., 1975 | MR | Zbl

[5] S. I. Vinitskii, L. I. Ponomarev, EChAYa, 13:6 (1982), 1336–1418

[6] G. I. Marchuk, Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR | MR | Zbl

[7] P. M. Prenter, Splines and Variational Methods, Wiley, New York, 1975 | MR | Zbl

[8] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980 | MR | Zbl

[9] R. K. Peterkop, Teoriya ionizatsii atomov elektronnym udarom, Zinatne, Riga, 1975

[10] G. H. Wannier, Phys. Rev., 90:5 (1953), 817–825 | DOI | Zbl

[11] I. V. Abarenkov, V. F. Brattsev, A. V. Tulub, Nachala kvantovoi khimii, Vyssh. shkola, M., 1989

[12] N. F. Stepanov, V. I. Pupyshev, Kvantovaya mekhanika molekul i kvantovaya khimiya, Izd-vo MGU, M., 1991

[13] F. T. Smith, J. Chem. Phys., 31 (1959), 1352–1359 | DOI

[14] E. S. Chang, U. Fano, Phys. Rev. A, 6:1 (1972), 173–185 | DOI

[15] V. I. Korobov, YaF, 50:6 (1989), 1595–1604 | MR

[16] V. V. Pupyshev, EChAYa, 3:6 (1999), 1561–1649

[17] V. V. Pupyshev, EChAYa, 35:2 (2004), 256–347

[18] V. V. Pupyshev, Pisma v EChAYa, 3:2 (2006), 28–42 | MR

[19] V. V. Pupyshev, EChAYa, 33:4 (2002), 843–914

[20] V. V. Pupyshev, TMF, 148:2 (2006), 227–242 | DOI | MR | Zbl