Gibbs and Bose–Einstein distributions for an ensemble of self-adjoint
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 312-316 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of an ensemble of self-adjoint operators and formulate theorems relating the occupation numbers to the number of eigenvalues of the ensemble. We formulate a theorem for the Gibbs distribution in classical mechanics.
Keywords: Gibbs distribution, Bose–Einstein distribution, Bose condensate, ordered sampling with returns, disordered sampling with returns
Mots-clés : Gibbs ensemble.
@article{TMF_2008_155_2_a9,
     author = {V. P. Maslov},
     title = {Gibbs and {Bose{\textendash}Einstein} distributions for an~ensemble of self-adjoint},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {312--316},
     year = {2008},
     volume = {155},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a9/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Gibbs and Bose–Einstein distributions for an ensemble of self-adjoint
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 312
EP  - 316
VL  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a9/
LA  - ru
ID  - TMF_2008_155_2_a9
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Gibbs and Bose–Einstein distributions for an ensemble of self-adjoint
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 312-316
%V 155
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a9/
%G ru
%F TMF_2008_155_2_a9
V. P. Maslov. Gibbs and Bose–Einstein distributions for an ensemble of self-adjoint. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 312-316. http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a9/

[1] V. P. Maslov, TMF, 153:3 (2007), 388–408 | DOI | MR | Zbl

[2] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002 | MR | Zbl

[3] V. P. Maslov, TMF, 154:1 (2008), 207–208 | DOI | MR | Zbl

[4] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika T. V. Statisticheskaya fizika, Nauka, M., 1964 | MR | MR | Zbl

[5] A. N. Shiryaev, Veroyatnost, t. 1, MTsNMO, M., 2004 | MR | MR | Zbl

[6] V. P. Maslov, Russ. J. Math. Phys., 2:4 (1994), 527–534 ; 3:1 (1995), 123–132 ; 271–276 ; 401–406 ; 529–534 ; 4:1 (1996), 117–122 ; 2, 265–270 ; 4, 539–546 ; 5:4 (1997), 473–488 ; 1, 123–130 ; 2, 273–278 ; 3, 405–412 ; 4, 529–534 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[7] N. Ashkroft, N. Mermin, Fizika tverdogo tela, t. 1, Mir, M., 1979 | Zbl