Spectrum of the two-particle Schrödinger operator on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 287-300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the family of two-particle discrete Schrödinger operators $H(k)$ associated with the Hamiltonian of a system of two fermions on a $\nu$-dimensional lattice $\mathbb Z^{\nu}$, $\nu\geq 1$, where $k\in\mathbb T^{\nu}\equiv(-\pi,\pi]^{\nu}$ is a two-particle quasimomentum. We prove that the operator $H(k)$, $k\in\mathbb T^{\nu}$, $k\ne0$, has an eigenvalue to the left of the essential spectrum for any dimension $\nu=1,2,\dots$ if the operator $H(0)$ has a virtual level ($\nu=1,2$) or an eigenvalue ($\nu\geq 3$) at the bottom of the essential spectrum (of the two-particle continuum).
Keywords: spectral properties, two-particle discrete Schrödinger operator, Birman–Schwinger principle, virtual level, eigenvalue.
@article{TMF_2008_155_2_a7,
     author = {S. N. Lakaev and A. M. Khalkhuzhaev},
     title = {Spectrum of the~two-particle {Schr\"odinger} operator on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {287--300},
     year = {2008},
     volume = {155},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a7/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - A. M. Khalkhuzhaev
TI  - Spectrum of the two-particle Schrödinger operator on a lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 287
EP  - 300
VL  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a7/
LA  - ru
ID  - TMF_2008_155_2_a7
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A A. M. Khalkhuzhaev
%T Spectrum of the two-particle Schrödinger operator on a lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 287-300
%V 155
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a7/
%G ru
%F TMF_2008_155_2_a7
S. N. Lakaev; A. M. Khalkhuzhaev. Spectrum of the two-particle Schrödinger operator on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 287-300. http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a7/

[1] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Ann. Inst. H. Poincaré Phys. Théor., 5:4 (2004), 743–772 | DOI | MR | Zbl

[2] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, Comm. Math. Phys., 262:1 (2006), 91–115 | DOI | MR | Zbl

[3] G. M. Graf, D. Schenker, Ann. Inst. H. Poincaré Phys. Théor., 67:1 (1997), 91–107 | MR | Zbl

[4] S. N. Lakaev, Funkts. analiz i ego pril., 27:3 (1993), 15–28 | DOI | MR | Zbl

[5] P. A. Faria da Veiga, L. Ioriatti, M. O'Carroll, Phys. Rev. E (3), 66:1 (2002), 6130 | MR

[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl

[7] P. R. Xalmosh, Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR | MR | Zbl