General form of the deformation of the Poisson superbracket on a $(2,n)$-dimensional superspace
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 265-286
Cet article a éte moissonné depuis la source Math-Net.Ru
Up to an equivalence transformation, we describe continuous formal deformations of the Poisson superbracket defined on compactly supported smooth functions on $\mathbb R^2$ taking values in a Grassmann algebra $\mathbb G^{n_-}$.
Keywords:
cohomology of Lie algebras, deformation of Lie algebras
Mots-clés : Poisson superbracket, quantization.
Mots-clés : Poisson superbracket, quantization.
@article{TMF_2008_155_2_a6,
author = {S. E. Konstein and I. V. Tyutin},
title = {General form of the~deformation of {the~Poisson} superbracket on a~$(2,n)$-dimensional superspace},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {265--286},
year = {2008},
volume = {155},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a6/}
}
TY - JOUR AU - S. E. Konstein AU - I. V. Tyutin TI - General form of the deformation of the Poisson superbracket on a $(2,n)$-dimensional superspace JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2008 SP - 265 EP - 286 VL - 155 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a6/ LA - ru ID - TMF_2008_155_2_a6 ER -
%0 Journal Article %A S. E. Konstein %A I. V. Tyutin %T General form of the deformation of the Poisson superbracket on a $(2,n)$-dimensional superspace %J Teoretičeskaâ i matematičeskaâ fizika %D 2008 %P 265-286 %V 155 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a6/ %G ru %F TMF_2008_155_2_a6
S. E. Konstein; I. V. Tyutin. General form of the deformation of the Poisson superbracket on a $(2,n)$-dimensional superspace. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 265-286. http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a6/
[1] S. E. Konshtein, I. V. Tyutin, TMF, 145:3 (2005), 291–320 | DOI | MR
[2] S. E. Konshtein, A. G. Smirnov, I. V. Tyutin, TMF, 148:2 (2006), 163–178 | DOI | MR
[3] D. A. Leites, I. M. Schepochkina, TMF, 126:3 (2001), 339–369 | DOI | MR | Zbl
[4] M. Gerstenhaber, Ann. Math., 79:1 (1964), 59–103 ; 99:2 (1974), 257–276 | DOI | MR | Zbl | DOI | MR | Zbl
[5] M. Scheunert, R. B. Zhang, J. Math. Phys., 39:9 (1998), 5024–5061 | DOI | MR | Zbl
[6] S. E. Konshtein, A. G. Smirnov, I. V. Tyutin, TMF, 143:2 (2005), 163–194 | DOI | MR