General form of the deformation of the Poisson superbracket on a $(2,n)$-dimensional superspace
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 265-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Up to an equivalence transformation, we describe continuous formal deformations of the Poisson superbracket defined on compactly supported smooth functions on $\mathbb R^2$ taking values in a Grassmann algebra $\mathbb G^{n_-}$.
Keywords: cohomology of Lie algebras, deformation of Lie algebras
Mots-clés : Poisson superbracket, quantization.
@article{TMF_2008_155_2_a6,
     author = {S. E. Konstein and I. V. Tyutin},
     title = {General form of the~deformation of {the~Poisson} superbracket on a~$(2,n)$-dimensional superspace},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {265--286},
     year = {2008},
     volume = {155},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a6/}
}
TY  - JOUR
AU  - S. E. Konstein
AU  - I. V. Tyutin
TI  - General form of the deformation of the Poisson superbracket on a $(2,n)$-dimensional superspace
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 265
EP  - 286
VL  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a6/
LA  - ru
ID  - TMF_2008_155_2_a6
ER  - 
%0 Journal Article
%A S. E. Konstein
%A I. V. Tyutin
%T General form of the deformation of the Poisson superbracket on a $(2,n)$-dimensional superspace
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 265-286
%V 155
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a6/
%G ru
%F TMF_2008_155_2_a6
S. E. Konstein; I. V. Tyutin. General form of the deformation of the Poisson superbracket on a $(2,n)$-dimensional superspace. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 265-286. http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a6/

[1] S. E. Konshtein, I. V. Tyutin, TMF, 145:3 (2005), 291–320 | DOI | MR

[2] S. E. Konshtein, A. G. Smirnov, I. V. Tyutin, TMF, 148:2 (2006), 163–178 | DOI | MR

[3] D. A. Leites, I. M. Schepochkina, TMF, 126:3 (2001), 339–369 | DOI | MR | Zbl

[4] M. Gerstenhaber, Ann. Math., 79:1 (1964), 59–103 ; 99:2 (1974), 257–276 | DOI | MR | Zbl | DOI | MR | Zbl

[5] M. Scheunert, R. B. Zhang, J. Math. Phys., 39:9 (1998), 5024–5061 | DOI | MR | Zbl

[6] S. E. Konshtein, A. G. Smirnov, I. V. Tyutin, TMF, 143:2 (2005), 163–194 | DOI | MR