Euler integral symmetries for a deformed Heun equation and symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 252-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Euler integral transformations relate solutions of ordinary linear differential equations and generate integral representations of the solutions in a number of cases or relations between solutions of constrained equations (Euler symmetries) in some other cases. These relations lead to the corresponding symmetries of the monodromy matrices. We discuss Euler symmetries in the case of the simplest Fuchsian system that is equivalent to a deformed Heun equation, which is in turn related to the Painlevé PVI equation. The existence of integral symmetries of the deformed Heun equation leads to the corresponding symmetries of the PVI equation.
Mots-clés : Euler transformation, Heun equation, Painlevé equation.
@article{TMF_2008_155_2_a5,
     author = {A. Ya. Kazakov and S. Yu. Slavyanov},
     title = {Euler integral symmetries for a~deformed {Heun} equation and symmetries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {252--264},
     year = {2008},
     volume = {155},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a5/}
}
TY  - JOUR
AU  - A. Ya. Kazakov
AU  - S. Yu. Slavyanov
TI  - Euler integral symmetries for a deformed Heun equation and symmetries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 252
EP  - 264
VL  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a5/
LA  - ru
ID  - TMF_2008_155_2_a5
ER  - 
%0 Journal Article
%A A. Ya. Kazakov
%A S. Yu. Slavyanov
%T Euler integral symmetries for a deformed Heun equation and symmetries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 252-264
%V 155
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a5/
%G ru
%F TMF_2008_155_2_a5
A. Ya. Kazakov; S. Yu. Slavyanov. Euler integral symmetries for a deformed Heun equation and symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 252-264. http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a5/

[1] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb, 2002 | MR | Zbl

[2] S. Yu. Slavyanov, F. R. Vukailovich, TMF, 150:1, 143–151 | DOI | MR | Zbl

[3] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problem of Analytic Continuation, Transl. Math. Monogr., 82, AMS, Providence, RI, 1990 | MR | Zbl

[4] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé. A Modern Theory of Special Functions, Aspects of Math. E, 16, Braunschweig, Vieweg, 1991 | DOI | MR | Zbl

[5] A. Ya. Kazakov, TMF, 116:3 (1998), 323–335 | DOI | MR | Zbl

[6] A. Ya. Kazakov, Zapiski nauch. sem. POMI, 275 (2001), 55–71 | MR | Zbl

[7] D. P. Novikov, TMF, 146:3 (2006), 355–364 | DOI | MR | Zbl

[8] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000 | MR