Matrix and vector models in the strong coupling limit
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 236-243
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider matrix and vector models in the large-$N$ limit: we study $N\times N$ matrices and vectors with $N^2$ components. In the case of a zero-dimensional model $(D=0)$, we prove that in the strong coupling limit $(g\to\infty)$, the partition functions of the two models coincide up to a coefficient. This also holds for $D=1$.
Keywords:
matrix model, vector model, $1/N$ expansion.
@article{TMF_2008_155_2_a3,
author = {D. V. Bykov and A. A. Slavnov},
title = {Matrix and vector models in the~strong coupling limit},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {236--243},
year = {2008},
volume = {155},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a3/}
}
D. V. Bykov; A. A. Slavnov. Matrix and vector models in the strong coupling limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 236-243. http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a3/
[1] G. 't Hooft, “Planar diagram field theories”, Progress in Gauge Field Theory, Proc. of the NATO Adv. Study Inst. held in Cargèse (September 1–15, 1983), NATO Adv. Science Inst. Ser. B: Phys., 115, eds. A. Jaffe, H. Lehmann, P. K. Mitter et al., Plenum Press, New York, 1984, 271–335 | MR
[2] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Phys. Rep., 323:3–4 (2000), 183–386 ; arXiv:hep-th/9905111 | DOI | MR
[3] E. Brézin, C. Itzykson, G. Parisi, J. B. Zuber, Comm. Math. Phys., 59:1 (1978), 35–51 | DOI | MR | Zbl
[4] J. Ambjørn, J. Jurkiewicz, Yu. M. Makeenko, Phys. Lett. B, 251:4 (1990), 517–524 | DOI | MR
[5] L. O. Chekhov, J. Phys. A, 39:28 (2006), 8857–8893 ; arXiv:hep-th/0602013 | DOI | MR | Zbl