Matrix and vector models in the~strong coupling limit
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 236-243
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider matrix and vector models in the large-$N$ limit: we study
$N\times N$ matrices and vectors with $N^2$ components. In the case of
a zero-dimensional model $(D=0)$, we prove that in the strong coupling limit
$(g\to\infty)$, the partition functions of the two models coincide up to a coefficient.
This also holds for $D=1$.
Keywords:
matrix model, vector model, $1/N$ expansion.
@article{TMF_2008_155_2_a3,
author = {D. V. Bykov and A. A. Slavnov},
title = {Matrix and vector models in the~strong coupling limit},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {236--243},
publisher = {mathdoc},
volume = {155},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a3/}
}
D. V. Bykov; A. A. Slavnov. Matrix and vector models in the~strong coupling limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 236-243. http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a3/