Propagation of Gaussian wave packets in thin periodic quantum
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 215-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the nonlinear Schrödinger equation with an integral Hartree-type nonlinearity in a thin quantum waveguide and study the propagation of Gaussian wave packets localized in the spatial variables. In the case of periodically varying waveguide walls, we establish the relation between the behavior of wave packets and the spectral properties of the auxiliary periodic problem for the one-dimensional Schrödinger equation. We show that for a positive value of the nonlinearity parameter, the integral nonlinearity prevents the packet from spreading as it propagates. In addition, we find situations such that the packet is strongly focused periodically in time and space.
Keywords: nonstationary Schrödinger equation with an integral nonlinearity, thin tube, Gaussian wave packet, localization.
@article{TMF_2008_155_2_a2,
     author = {J. Br\"uning and S. Yu. Dobrokhotov and R. V. Nekrasov and A. I. Shafarevich},
     title = {Propagation of {Gaussian} wave packets in thin periodic quantum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {215--235},
     year = {2008},
     volume = {155},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a2/}
}
TY  - JOUR
AU  - J. Brüning
AU  - S. Yu. Dobrokhotov
AU  - R. V. Nekrasov
AU  - A. I. Shafarevich
TI  - Propagation of Gaussian wave packets in thin periodic quantum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 215
EP  - 235
VL  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a2/
LA  - ru
ID  - TMF_2008_155_2_a2
ER  - 
%0 Journal Article
%A J. Brüning
%A S. Yu. Dobrokhotov
%A R. V. Nekrasov
%A A. I. Shafarevich
%T Propagation of Gaussian wave packets in thin periodic quantum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 215-235
%V 155
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a2/
%G ru
%F TMF_2008_155_2_a2
J. Brüning; S. Yu. Dobrokhotov; R. V. Nekrasov; A. I. Shafarevich. Propagation of Gaussian wave packets in thin periodic quantum. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 215-235. http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a2/

[1] V. P. Maslov, DAN SSSR, 123:3 (1958), 631–633 | Zbl

[2] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, TMF, 141:2 (2004), 267–303 ; В. В. Белов, С. Ю. Доброхотов, В. П. Маслов, Т. Я. Тудоровский, УФН, 175:9 (2005), 1004–1010 ; V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, J. Engrg. Math., 55:1–4 (2006), 183–237 | DOI | MR | Zbl | DOI | DOI | MR | Zbl

[3] G. F. Dell'Antonio, L. Tenuta, J. Phys. A, 37:21 (2004), 5605–5624 | DOI | MR | Zbl

[4] V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, TMF, 130:3 (2002), 460–492 | DOI | MR | Zbl

[5] V. V. Belov, E. I. Smirnova, Matem. zametki, 80:2 (2006), 309–312 | DOI | MR | Zbl

[6] A. S. Davydov, Solitony v molekulyarnykh sistemakh, Naukova dumka, Kiev, 1988 | MR | MR | Zbl

[7] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1976 | MR | Zbl

[8] V. A. Yakubovich, V. M. Starzhinskii, Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Hauka, M., 1972 ; В. А. Марченко, Операторы Штурма–Лиувилля и их приложения, Наукова думка, Киев, 1977 | MR | MR | Zbl | MR | MR | Zbl

[9] S. Yu. Dobrokhotov, Russ. J. Math. Phys., 6:3 (1999), 282–313 | MR | Zbl

[10] V. P. Maslov, Operatornye metody, Nauka, M., 1973 ; М. В. Карасев, В. П. Маслов, Нелинейные скобки Пуассона. Геометрия и квантование, Наука, М., 1991 ; М. В. Карасев, В. П. Маслов, “Алгебры с общими перестановочными соотношениями и их приложения. II: Операторные унитарно-нелинейные уравнения”, Итоги науки и техники. Современные проблемы математики. Новейшие достижения, 13, ВИНИТИ, М., 1979, 145–267 | MR | MR | Zbl | MR | Zbl | Zbl