Symmetries of nonlinear hyperbolic systems of the Toda chain type
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 344-355 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider hyperbolic systems of equations that have full sets of integrals along both characteristics. The best known example of models of this type is given by two-dimensional open Toda chains. For systems that have integrals, we construct a differential operator that takes integrals into symmetries. For systems of the chosen type, this proves the existence of higher symmetries dependent on arbitrary functions.
Mots-clés : Liouville equation
Keywords: Toda chain, integral, higher symmetry, hyperbolic system of partial differential equations, Noether theorem.
@article{TMF_2008_155_2_a12,
     author = {V. V. Sokolov and S. Ya. Startsev},
     title = {Symmetries of nonlinear hyperbolic systems of {the~Toda} chain type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {344--355},
     year = {2008},
     volume = {155},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a12/}
}
TY  - JOUR
AU  - V. V. Sokolov
AU  - S. Ya. Startsev
TI  - Symmetries of nonlinear hyperbolic systems of the Toda chain type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 344
EP  - 355
VL  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a12/
LA  - ru
ID  - TMF_2008_155_2_a12
ER  - 
%0 Journal Article
%A V. V. Sokolov
%A S. Ya. Startsev
%T Symmetries of nonlinear hyperbolic systems of the Toda chain type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 344-355
%V 155
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a12/
%G ru
%F TMF_2008_155_2_a12
V. V. Sokolov; S. Ya. Startsev. Symmetries of nonlinear hyperbolic systems of the Toda chain type. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 2, pp. 344-355. http://geodesic.mathdoc.fr/item/TMF_2008_155_2_a12/

[1] A. V. Zhiber, A. B. Shabat, Dokl. AN SSSR, 247:5 (1979), 1103–1107 | MR

[2] A. V. Zhiber, V. V. Sokolov, UMN, 56:1(337) (2001), 63–106 | DOI | MR | Zbl

[3] F. Trikomi, Lektsii po uravneniyam v chastnykh proizvodnykh, IL, M., 1957 | MR | Zbl

[4] A. N. Leznov, M. V. Saveliev, Lett. Math. Phys., 3:6 (1979), 489–494 | DOI | MR | Zbl

[5] A. N. Leznov, TMF, 42:3 (1980), 343–349 | DOI | MR | Zbl

[6] A. B. Shabat, R. I. Yamilov, Ekspotentsialnye sistemy tipa I i matritsy Kartana, Preprint, Bashkirskii filial AN SSSR, Ufa, 1981

[7] A. B. Shabat, Phys. Lett. A, 200:2 (1995), 121–133 | DOI | MR | Zbl

[8] A. N. Leznov, V. G. Smirnov, A. B. Shabat, TMF, 51:1 (1982), 10–22 | DOI | MR | Zbl

[9] A. N. Leznov, A. B. Shabat, “Usloviya obryva ryadov teorii vozmuschenii”, Integriruemye sistemy, Bashkirskii filial AN SSSR, Ufa, 1982, 34–45

[10] D. K. Demskoi, S. Ya. Startsev, Fundament. i prikl. matem., 10:1 (2004), 29–37 | MR | Zbl

[11] S. Ya. Startsev, Fundament. i prikl. matem., 12:7 (2006), 251–262 | MR