Eigenvectors of the Baxter–Bazhanov–Stroganov $\tau^{(2)}(t_q)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 94-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give explicit formulas for the eigenvectors of the transfer matrix of the Baxter–Bazhanov–Stroganov {(}BBS{\rm)} model {\rm(}$N$-state spin model{)} with fixed-spin boundary conditions. We obtain these formulas from the formulas for the eigenvectors of the periodic BBS model by a limit procedure. The latter formulas were derived in the framework of Sklyanin's method of separation of variables. In the case of fixed-spin boundaries, we solve the corresponding $T$$Q$ Baxter equations for the functions of separated variables explicitly. As a particular case, we obtain the eigenvectors of the Hamiltonian of the Ising-like $\mathbb{Z}_N$ quantum chain model.
Keywords: integrable quantum chain, fixed boundary conditions, method of separation of variables.
@article{TMF_2008_155_1_a7,
     author = {N. Z. Iorgov and V. N. Shadura and Yu. V. Tykhyy},
     title = {Eigenvectors of the {Baxter{\textendash}Bazhanov{\textendash}Stroganov} $\tau^{(2)}(t_q)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {94--108},
     year = {2008},
     volume = {155},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a7/}
}
TY  - JOUR
AU  - N. Z. Iorgov
AU  - V. N. Shadura
AU  - Yu. V. Tykhyy
TI  - Eigenvectors of the Baxter–Bazhanov–Stroganov $\tau^{(2)}(t_q)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 94
EP  - 108
VL  - 155
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a7/
LA  - ru
ID  - TMF_2008_155_1_a7
ER  - 
%0 Journal Article
%A N. Z. Iorgov
%A V. N. Shadura
%A Yu. V. Tykhyy
%T Eigenvectors of the Baxter–Bazhanov–Stroganov $\tau^{(2)}(t_q)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 94-108
%V 155
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a7/
%G ru
%F TMF_2008_155_1_a7
N. Z. Iorgov; V. N. Shadura; Yu. V. Tykhyy. Eigenvectors of the Baxter–Bazhanov–Stroganov $\tau^{(2)}(t_q)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 94-108. http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a7/

[1] E. Sklyanin, “The quantum Toda chain”, Nonlinear equations in classical and quantum field theory, Proc. Semin. (Paris 1983–1984), Lecture Notes in Phys., 226, Springer, Berlin, 1985, 196–233 | DOI | MR | Zbl

[2] S. Kharchev, D. Lebedev, Pisma v ZhETF, 71 (2000), 338–343

[3] S. Derkachev, G. Korchemsky, A. Manashov, Nucl. Phys. B, 617:1–3 (2001), 375–440 | DOI | MR | Zbl

[4] G. von Gehlen, N. Iorgov, S. Pakuliak, V. Shadura, J. Phys. A, 39:23 (2006), 7257–7282 ; arXiv: nlin.SI/0603028 | DOI | MR | Zbl

[5] R. J. Baxter, J. Statist. Phys., 117:1–2 (2004), 1–25 ; arXiv: cond-mat/0409493 | DOI | MR | Zbl

[6] R. J. Baxter, J. Statist. Phys., 57:1–2 (1989), 1–39 | DOI | MR

[7] V. V. Bazhanov, Yu. G. Stroganov, J. Statist. Phys., 59:3–4 (1990), 799–817 | DOI | MR | Zbl

[8] R. J. Baxter, V. V. Bazhanov, J. H. H. Perk, Internat. J. Modern. Phys. B, 4:5 (1990), 803–870 | DOI | MR

[9] I. G. Korepanov, Skrytye simmetrii v $6$-vershinnoi modeli, Dep. VINITI No 1472-V87, Chelyabinskii politekhnicheskii institut, 1987; Записки науч. сем. ПОМИ, 215:14 (1994), 163–177 ; arXiv: hep-th/9410066 | MR | Zbl

[10] V. V. Bazhanov, R. J. Baxter, J. Statist. Phys., 69:3–4 (1992), 453–485 | DOI | MR | Zbl

[11] R. J. Baxter, Phys. Lett. A, 140:4 (1989), 155–157 | DOI | MR

[12] V. O. Tarasov, Internat. J. Modern Phys. A, 7: Suppl. 1B (1992), 963–975 | DOI | Zbl

[13] S. Roan, J. Phys. A, 40:7 (2007), 1481–1511 | DOI | MR | Zbl

[14] N. Iorgov, SIGMA, 2 (2006), Paper 019, 10 pp. ; arXiv: nlin.SI/0602010 | DOI | MR | Zbl

[15] N. Iorgov, V. Roubtsov, V. Shadura, Yu. Tykhyy, SIGMA, 3 (2007), Paper 013, 14 pp. ; arXiv: nlin.SI/0701040 | DOI | MR | Zbl