Eigenvectors of the Baxter--Bazhanov--Stroganov $\tau^{(2)}(t_q)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 94-108
Voir la notice de l'article provenant de la source Math-Net.Ru
We give explicit formulas for the eigenvectors of the transfer matrix of
the Baxter–Bazhanov–Stroganov {(}BBS{\rm)} model {\rm(}$N$-state spin
model{)} with fixed-spin boundary conditions. We obtain these formulas
from the formulas for the eigenvectors of the periodic BBS model by
a limit procedure. The latter formulas were derived in the framework of
Sklyanin's method of separation of variables. In the case of fixed-spin
boundaries, we solve the corresponding $T$–$Q$ Baxter equations for
the functions of separated variables explicitly. As a particular case, we obtain
the eigenvectors of the Hamiltonian of the Ising-like $\mathbb{Z}_N$ quantum
chain model.
Keywords:
integrable quantum chain, fixed boundary conditions, method of separation of variables.
@article{TMF_2008_155_1_a7,
author = {N. Z. Iorgov and V. N. Shadura and Yu. V. Tykhyy},
title = {Eigenvectors of the {Baxter--Bazhanov--Stroganov} $\tau^{(2)}(t_q)$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {94--108},
publisher = {mathdoc},
volume = {155},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a7/}
}
TY - JOUR
AU - N. Z. Iorgov
AU - V. N. Shadura
AU - Yu. V. Tykhyy
TI - Eigenvectors of the Baxter--Bazhanov--Stroganov $\tau^{(2)}(t_q)$
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2008
SP - 94
EP - 108
VL - 155
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a7/
LA - ru
ID - TMF_2008_155_1_a7
ER -
%0 Journal Article
%A N. Z. Iorgov
%A V. N. Shadura
%A Yu. V. Tykhyy
%T Eigenvectors of the Baxter--Bazhanov--Stroganov $\tau^{(2)}(t_q)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 94-108
%V 155
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a7/
%G ru
%F TMF_2008_155_1_a7
N. Z. Iorgov; V. N. Shadura; Yu. V. Tykhyy. Eigenvectors of the Baxter--Bazhanov--Stroganov $\tau^{(2)}(t_q)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 94-108. http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a7/