Bäcklund transformations for the difference Hirota equation and the
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 74-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider $GL(K\mid M)$-invariant integrable supersymmetric spin chains with twisted boundary conditions and demonstrate the role of Bäcklund transformations in solving the difference Hirota equation for eigenvalues of their transfer matrices. We show that the nested Bethe ansatz technique is equivalent to a chain of successive Bäcklund transformations "undressing" the original problem to a trivial one.
Keywords: integrable nonlinear difference equation, Bäcklund transformation, integrable supersymmetric spin chain, Bethe ansatz.
@article{TMF_2008_155_1_a6,
     author = {A. V. Zabrodin},
     title = {B\"acklund transformations for the difference {Hirota} equation and the},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--93},
     year = {2008},
     volume = {155},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a6/}
}
TY  - JOUR
AU  - A. V. Zabrodin
TI  - Bäcklund transformations for the difference Hirota equation and the
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 74
EP  - 93
VL  - 155
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a6/
LA  - ru
ID  - TMF_2008_155_1_a6
ER  - 
%0 Journal Article
%A A. V. Zabrodin
%T Bäcklund transformations for the difference Hirota equation and the
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 74-93
%V 155
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a6/
%G ru
%F TMF_2008_155_1_a6
A. V. Zabrodin. Bäcklund transformations for the difference Hirota equation and the. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 74-93. http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a6/

[1] I. Krichever, O. Lipan, P. Wiegmann, A. Zabrodin, Comm. Math. Phys., 188:2 (1997), 267–304 ; hep-th/9604080 | DOI | MR | Zbl

[2] A. Zabrodin, Internat. J. Modern Phys. B, 11 (1997), 3125–3158 ; hep-th/9610039 | DOI | MR | Zbl

[3] A. V. Zabrodin, TMF, 116 (1998), 54–100 | DOI | MR | Zbl

[4] V. Bazhanov, N. Reshetikhin, J. Phys. A, 23:9 (1990), 1477–1492 | DOI | MR | Zbl

[5] A. Klümper, P. Pearce, Physica A, 183 (1992), 304–350 | DOI | MR | Zbl

[6] A. Kuniba, T. Nakanishi, J. Suzuki, Internat. J. Modern Phys. A, 9 (1994), 5215–5266 ; hep-th/9309137 | DOI | MR | Zbl

[7] Z. Tsuboi, J. Phys. A, 30 (1997), 7975–7991 | DOI | MR | Zbl

[8] R. Hirota, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR

[9] V. Kazakov, A. Sorin, A. Zabrodin, Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics, hep-th/0703147 | MR

[10] P. P. Kulish, E. K. Sklyanin, Zap. nauch. sem. LOMI, 95 (1980), 129–160 | MR

[11] P. P. Kulish, Zap. nauch. sem. LOMI, 145 (1985), 140–163 | MR

[12] V. Kac, Adv. Math., 26 (1977), 8–96 ; “Representations of classical Lie superalgebras”, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), Lecture Notes in Math., 676, Springer, New York, 1978, 597–626 | DOI | MR | Zbl | DOI | MR

[13] A. Baha Balantekin, I. Bars, J. Math. Phys., 22:6 (1981), 1149–1162 | DOI | MR | Zbl

[14] I. Bars, B. Morel, H. Ruegg, J. Math. Phys., 24:9 (1983), 2253–2262 | DOI | MR | Zbl

[15] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | MR

[16] L. Faddeev, Internat. J. Modern Phys. A, 10:13 (1995), 1845–1878 ; hep-th/9404013 | DOI | MR | Zbl

[17] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl

[18] E. Date, M. Jimbo, T. Miwa, J. Phys. Soc. Japan, 51:12 (1982), 4116–4124 | DOI | MR

[19] A. V. Zabrodin, TMF, 113:2 (1997), 179–230 | DOI | MR

[20] I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, New York–London, 1995 | MR | Zbl

[21] S. Saito, N. Saitoh, Phys. Lett. A, 120 (1987), 322–326 | DOI | MR

[22] I. Krichever, Characterizing Jacobians via trisecants of the Kummer Variety, math.AG/0605625 | MR

[23] N. Shinzawa, S. Saito, J. Phys. A, 31:19 (1998), 4533–4540 ; solv-int/9801002 | DOI | MR | Zbl

[24] N. Shinzawa, J. Phys. A, 33:21 (2000), 3957–3970 ; ; N. Shinzawa, R. Hirota, J. Phys. A, 36:16 (2003), 4667–4675 ; The Bäcklund transformation equations for the ultradiscrete KP equation, solv-int/9907016nlin.SI/0212014 | DOI | MR | Zbl | DOI | MR | Zbl

[25] P. Kulish, N. Reshetikhin, J. Phys. A, 16 (1983), L591–L596 | DOI | MR | Zbl