Light-cone Yang--Mills mechanics: $SU(2)$ vs.~$SU(3)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 62-73
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the light-cone $SU(n)$ Yang–Mills mechanics formulated as
the leading order of the long-wavelength approximation to the light-front $SU(n)$
Yang–Mills theory. In the framework of the Dirac formalism for degenerate
Hamiltonian systems, for models with the structure groups $SU(2)$ and
$SU(3)$, we determine the complete set of constraints and classify them. We
show that the light-cone mechanics has an extended invariance{:} in
addition to the local $SU(n)$ gauge rotations, there is a new local
two-parameter Abelian transformation, not related to the isotopic group, that
leaves the Lagrangian system unchanged. This extended invariance has one
profound consequence. It turns out that the light-cone $SU(2)$ Yang–Mills
mechanics, in contrast to the well-known instant-time $SU(2)$ Yang–Mills
mechanics, represents a classically integrable system. For calculations, we
use the technique of Gröbner bases in the theory of polynomial ideals.
Keywords:
gauge symmetry, Hamiltonian system, Gröbner basis.
@article{TMF_2008_155_1_a5,
author = {V. P. Gerdt and Yu. G. Palii and A. M. Khvedelidze},
title = {Light-cone {Yang--Mills} mechanics: $SU(2)$ vs.~$SU(3)$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {62--73},
publisher = {mathdoc},
volume = {155},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a5/}
}
TY - JOUR AU - V. P. Gerdt AU - Yu. G. Palii AU - A. M. Khvedelidze TI - Light-cone Yang--Mills mechanics: $SU(2)$ vs.~$SU(3)$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2008 SP - 62 EP - 73 VL - 155 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a5/ LA - ru ID - TMF_2008_155_1_a5 ER -
V. P. Gerdt; Yu. G. Palii; A. M. Khvedelidze. Light-cone Yang--Mills mechanics: $SU(2)$ vs.~$SU(3)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 62-73. http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a5/