Light-cone Yang–Mills mechanics: $SU(2)$ vs. $SU(3)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 62-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the light-cone $SU(n)$ Yang–Mills mechanics formulated as the leading order of the long-wavelength approximation to the light-front $SU(n)$ Yang–Mills theory. In the framework of the Dirac formalism for degenerate Hamiltonian systems, for models with the structure groups $SU(2)$ and $SU(3)$, we determine the complete set of constraints and classify them. We show that the light-cone mechanics has an extended invariance{:} in addition to the local $SU(n)$ gauge rotations, there is a new local two-parameter Abelian transformation, not related to the isotopic group, that leaves the Lagrangian system unchanged. This extended invariance has one profound consequence. It turns out that the light-cone $SU(2)$ Yang–Mills mechanics, in contrast to the well-known instant-time $SU(2)$ Yang–Mills mechanics, represents a classically integrable system. For calculations, we use the technique of Gröbner bases in the theory of polynomial ideals.
Keywords: gauge symmetry, Hamiltonian system, Gröbner basis.
@article{TMF_2008_155_1_a5,
     author = {V. P. Gerdt and Yu. G. Palii and A. M. Khvedelidze},
     title = {Light-cone {Yang{\textendash}Mills} mechanics: $SU(2)$ vs.~$SU(3)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {62--73},
     year = {2008},
     volume = {155},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a5/}
}
TY  - JOUR
AU  - V. P. Gerdt
AU  - Yu. G. Palii
AU  - A. M. Khvedelidze
TI  - Light-cone Yang–Mills mechanics: $SU(2)$ vs. $SU(3)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 62
EP  - 73
VL  - 155
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a5/
LA  - ru
ID  - TMF_2008_155_1_a5
ER  - 
%0 Journal Article
%A V. P. Gerdt
%A Yu. G. Palii
%A A. M. Khvedelidze
%T Light-cone Yang–Mills mechanics: $SU(2)$ vs. $SU(3)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 62-73
%V 155
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a5/
%G ru
%F TMF_2008_155_1_a5
V. P. Gerdt; Yu. G. Palii; A. M. Khvedelidze. Light-cone Yang–Mills mechanics: $SU(2)$ vs. $SU(3)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 62-73. http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a5/

[1] P. A. M. Dirac, Rev. Modern Phys., 21:3 (1949), 392–399 | DOI | MR | Zbl

[2] P. A. M. Dirak, K sozdaniyu kvantovoi teorii polya, Nauka, M., 1990 | MR

[3] K. Sundermeyer, Constrained Dynamics. With applications to Yang–Mills theory, general relativity, classical spin, dual string model, Lecture Notes in Phys., 169, Springer, Berlin–Heidelberg–New York, 1982 | MR | Zbl

[4] G. Z. Baseyan, S. G. Matinyan, G. K. Savvidi, Pisma v ZhETF, 29 (1979), 641

[5] M. Lüscher, Nucl. Phys. B, 219:1 (1983), 233–261 | DOI | MR | Zbl

[6] B. Simon, Ann. Phys., 146:1 (1983), 209–220 | DOI | MR | Zbl

[7] B. V. Chirikov, D. L. Shepelyanskii, Pisma v ZhETF, 34 (1981), 171 ; E. С. Николаевский, Л. Н. Щур, Письма в ЖЭТФ, 36 (1982), 176 | MR

[8] B. V. Medvedev, TMF, 60:2 (1984), 224–244 | MR

[9] I. Ya. Aref'eva, A. S. Koshelev, P. B. Medvedev, Modern Phys. Lett. A, 13:31 (1998), 2481–2493 | DOI | MR

[10] B. Dahmen, B. Raabe, Nucl. Phys. B, 384:1–2 (1992), 352–380 | DOI | MR

[11] S. A. Gogilidze, A. M. Khvedelidze, D. M. Mladenov, H. P. Pavel, Phys. Rev. D, 57:12 (1998), 7488–7500 | DOI | MR

[12] A. M. Khvedelidze, H. P. Pavel, G. Röpke, Phys. Rev. D, 61:2 (2000), 025017 | DOI | MR

[13] A. M. Khvedelidze, H. P. Pavel, Phys. Lett. A, 267:2–3 (2000), 96–100 | DOI | MR | Zbl

[14] A. M. Khvedelidze, D. M. Mladenov, Phys. Rev. D, 62:12 (2000), 125016 | DOI | MR

[15] H.-P. Pavel, Phys. Lett. B, 648:1 (2007), 97–106 ; arXiv: hep-th/0701283 | DOI | MR | Zbl

[16] T. Becker, V. Weispfenning, Gröbner Bases: A Computational Approach to Commutative Algebra, Graduate Texts in Mathematics, 141, Springer, New York, 1993 | DOI | MR | Zbl

[17] D. Cox, J. Little, D. O'Shea, Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd ed., Undergraduate Texts in Mathematics, Springer, New York, 1996 | MR | Zbl

[18] B. Buchberger, F. Winkler (eds.), Gröbner Bases and Applications, Papers from the Conference on 33 Years of Grobner Bases held at the University of Linz (Linz, February 2–4, 1998), London Mathematical Society Lecture Note Series, 251, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[19] V. P Gerdt, S. A. Gogilidze, “Constrained Hamiltonian systems and Gröbner bases”, Computer Algebra in Scientific Computing, CASC'99. Proc. 2nd Workshop (Munich, Germany, May 31–June 4, 1999), eds. V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov, Springer, Berlin, 1999, 138–146 ; arXiv: math/9909113 | MR | Zbl

[20] V. Gerdt, A. Khvedelidze, D. Mladenov, “Analysis of constraints in light-cone version of $SU(2)$ Yang-Mills mechanics”, Computer Algebra and its Applications to Physics. CAAP-2001, Proc. Int. Workshop (Dubna, Russia, June 28–30, 2001), ed. V. P. Gerdt, JINR, Dubna, 2002, 83–92; arXiv: hep-th/0209107

[21] V. Gerdt, A. Khvedelidze, D. Mladenov, Light-cone $SU(2)$ Yang-Mills theory and conformal mechanics, arXiv: hep-th/0210022

[22] V. Gerdt, A. Khvedelidze, D. Mladenov, “On application of involutivity analysis of differential equations to constrained dynamical systems”, Symmetries and Integrable Systems, Selected Papers of the Seminar, 2000–2005, v. I, ed. A. N. Sissakian, JINR, Dubna, 2006, 132–150; arXiv: hep-th/0311174

[23] V. Gerdt, A. Khvedelidze, Yu. Palii, “Towards an algorithmisation of the Dirac constraint formalism”, Global Integrabilty of Field Theories, Proc. GIFT 2006, eds. J. Calmet, W. M. Seiler, R. W. Tucker, Cockroft Institute, Daresbury, UK, 2006, 135–154 ; arXiv: math-ph/0611021 | MR | Zbl

[24] T. Heinzl, “Light-cone quantization: Foundations and applications”, Lecture Notes in Phys., 572, Springer, Berlin, 2001, 55–142 | DOI | Zbl

[25] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, NJ, 1992 | MR | Zbl

[26] S. A. Gogilidze, V. V. Sanadze, Yu. S. Surovtsev, F. G. Tkebuchava, J. Phys. A, 27:19 (1994), 6509–6523 | DOI | MR | Zbl