Generalized coherent states for oscillators associated with the Charlier
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 39-46
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue studying the generalized coherent states for oscillator-like systems associated with a given family of orthogonal polynomials. We consider the case of generalized oscillators generated by the Charlier $q$-polynomials.
Keywords: deformed oscillator, coherent state
Mots-clés : orthogonal polynomials, Charlier $q$-polynomial.
@article{TMF_2008_155_1_a3,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {Generalized coherent states for oscillators associated with the {Charlier}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {39--46},
     year = {2008},
     volume = {155},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a3/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - Generalized coherent states for oscillators associated with the Charlier
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 39
EP  - 46
VL  - 155
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a3/
LA  - ru
ID  - TMF_2008_155_1_a3
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T Generalized coherent states for oscillators associated with the Charlier
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 39-46
%V 155
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a3/
%G ru
%F TMF_2008_155_1_a3
V. V. Borzov; E. V. Damaskinsky. Generalized coherent states for oscillators associated with the Charlier. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a3/

[1] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR | Zbl

[2] Dzh. Klauder, E. Sudarshan, Osnovy kvantovoi optiki, Mir, M., 1979

[3] V. V. Dodonov, J. Opt. B, 4:1 (2002), R1–R33 | DOI | MR

[4] R. Floreanini, L. Vinet, Lett. Math. Phys., 22:1 (1991), 45–54 | DOI | MR | Zbl

[5] E. V. Damaskinskii, P. P. Kulish, Zapiski nauch. sem. LOMI, 199 (1992), 81–90 | MR | Zbl

[6] N. M. Atakishiyev, E. I. Jafarov, Sh. M. Nagiyev, K. B. Wolf, Rev. Mexicana Fis., 44:3 (1998), 235–244 ; arXiv: math-ph/9807035 | MR | Zbl

[7] A. Odzijewicz, M. Horowski, A. Tereszkiewicz, J. Phys. A, 34 (2001), 4353–4376 | DOI | MR | Zbl

[8] V. V. Borzov, E. V. Damaskinskii, Zapiski nauch. sem. POMI, 335 (2006), 75–99 | MR | Zbl

[9] V. V. Borzov, TMF, 153:3 (2007), 363–380 | DOI | MR | Zbl

[10] R. Koekoek, R. F. Swarttouw, The Askey sheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report No 94-05, Delft University of Technology, 1994; arXiv: math.CA/9602214

[11] V. V. Borzov, Integral Transforms Spec. Funct., 12:2 (2001), 115–138 ; arXiv: math.CA/0002226 | DOI | MR | Zbl

[12] V. V. Borzov, E. V. Damaskinsky, P. P. Kulish, Rev. Math. Phys., 12:5 (2000), 691–710 | DOI | MR | Zbl

[13] V. V. Borzov, E. V. Damaskinsky, Integral Transforms Spec. Funct., 13:6 (2002), 547–554 ; arXiv: math.QA/0101215 | DOI | MR | Zbl

[14] R. Askey, S. K. Suslov, J. Physics A, 26 (1993), L693–L698 ; arXiv: math/9307206 | DOI | MR | Zbl

[15] R. Askey, S. K. Suslov, Lett. Math. Phys., 29 (1993), 123–132 ; arXiv: math/9307207 | DOI | MR | Zbl

[16] J. R. Klauder, K. A. Penson, J.-M. Sixdeniers, Phys. Rev. A, 64:1 (2001), 013817 | DOI | MR

[17] V. V. Borzov, E. V. Damaskinsky, “Coherent states and uncertainty relations for generalized oscillators connected with the given families of orthogonal polynomials”, Proc. Intern. Semin. Day on DIFFRACTION 2005, ed. I. V. Andronov, St. Petersburg State Univ., St. Petersburg, 2005, 40–49 | DOI | MR

[18] V. V. Borzov, E. V. Damaskinskii, Zapiski nauch. sem. POMI, 308 (2004), 48–66 | MR | Zbl