Four-vertex model and random tilings
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 25-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the exactly solvable four-vertex model on a square lattice with different boundary conditions. Using the algebraic Bethe ansatz method allows calculating the partition function of the model. For fixed boundary conditions, we establish the connection between the scalar product of the state vectors and the generating function of the column- and row-strict boxed plane partitions. We discuss the tiling model on a periodic lattice.
Keywords: integrable model, Bethe ansatz
Mots-clés : plane partition.
@article{TMF_2008_155_1_a2,
     author = {N. M. Bogolyubov},
     title = {Four-vertex model and random tilings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {25--38},
     year = {2008},
     volume = {155},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a2/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
TI  - Four-vertex model and random tilings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 25
EP  - 38
VL  - 155
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a2/
LA  - ru
ID  - TMF_2008_155_1_a2
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%T Four-vertex model and random tilings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 25-38
%V 155
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a2/
%G ru
%F TMF_2008_155_1_a2
N. M. Bogolyubov. Four-vertex model and random tilings. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 25-38. http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a2/

[1] R. Bakster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | Zbl

[2] V. E. Korepin, Comm. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl

[3] V. Korepin, P. Zinn-Justin, J. Phys. A, 33:40 (2000), 7053–7066 | DOI | MR | Zbl

[4] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, J. Phys. A, 35:27 (2002), 5525–5541 | DOI | MR | Zbl

[5] D. Allison, N. Reshetikhin, Ann. Inst. Fourier (Grenoble), 55:6 (2005), 1847–1869 | DOI | MR | Zbl

[6] O. Syljuåsen, M. Zvonarev, Phys. Rev. E, 70:1 (2004), 016118 | DOI

[7] G. Kuperberg, Int. Math. Res. Not., 1996:3 (1996), 139–150 | DOI | MR | Zbl

[8] F. Colomo, A. G. Pronko, J. Stat. Mech., 2005, no. 1, 01005 | DOI | MR | Zbl

[9] P. L. Ferrari, H. Spohn, J. Phys. A, 39:33 (2006), 10297–10306 ; arXiv: cond-mat/0605406 | DOI | MR | Zbl

[10] W. Li, H. Park, M. Widom, J. Phys. A, 23:11 (1990), L573–L580 | DOI | MR

[11] W. Li, H. Park, J. Phys. A, 24 (1991), 257–264 | DOI

[12] L. D. Faddeev, Mathematical Physics Reviews, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Academic, Chur, 1980, 107–155 | MR | Zbl

[13] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[14] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR | MR | Zbl

[15] D. M. Bressoud, Proofs and Confirmations: the Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[16] A. M. Vershik, Funkts. analiz i ego pril., 30:2 (1996), 19–39 | DOI | MR | Zbl

[17] N. M. Bogoliubov, J. Phys. A, 38:43 (2005), 9415–9430 | DOI | MR | Zbl

[18] N. V. Tsilevich, Funkts. analiz i ego pril., 40:3 (2006), 53–65 | DOI | MR | Zbl

[19] K. Shigechi, M. Uchiyama, J. Phys. A, 38:48 (2005), 10287–10306 | DOI | MR | Zbl

[20] N. M. Bogolyubov, TMF, 150:2 (2007), 193–203 | DOI | MR | Zbl

[21] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR | MR | Zbl

[22] N. I. Abarenkova, A. G. Pronko, TMF, 131:2 (2002), 288–303 | DOI | MR | Zbl