An analytic framework for the two-dimensional infinite Toda hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 177-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Starting with the group of operators on a separable Hilbert space that differ from the identity by a trace-class operator, we construct a solution of the two-dimensional infinite Toda hierarchy associated with a maximal commutative subalgebra in complex $k{\times}k$ matrices.
Keywords: two-dimensional infinite Toda hierarchy, linearization, commuting flows, Banach Lie group, big cell.
Mots-clés : Lax equation
@article{TMF_2008_155_1_a14,
     author = {G. F. Helminck and S. V. Polenkova},
     title = {An analytic framework for the two-dimensional infinite {Toda} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--192},
     year = {2008},
     volume = {155},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a14/}
}
TY  - JOUR
AU  - G. F. Helminck
AU  - S. V. Polenkova
TI  - An analytic framework for the two-dimensional infinite Toda hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 177
EP  - 192
VL  - 155
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a14/
LA  - ru
ID  - TMF_2008_155_1_a14
ER  - 
%0 Journal Article
%A G. F. Helminck
%A S. V. Polenkova
%T An analytic framework for the two-dimensional infinite Toda hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 177-192
%V 155
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a14/
%G ru
%F TMF_2008_155_1_a14
G. F. Helminck; S. V. Polenkova. An analytic framework for the two-dimensional infinite Toda hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 177-192. http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a14/

[1] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. B, 397:1–2 (1993), 339–378 | DOI | MR

[2] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., 4, ed. K. Okamoto, North-Holland, Amsterdam–New York, 1984, 1–95 | MR | Zbl

[3] G. F. Helminck, Acta Appl. Math., 90:1–2 (2006), 121–142 | DOI | MR | Zbl

[4] G. F. Helminck, M. G. Mishina, S. V. Polenkova, Bulg. J. Phys., 33:Suppl. 2 (2006), 600–611 | MR | Zbl

[5] M. Mulase, J. Diff. Geom., 19:2 (1984), 403–430 | DOI | MR | Zbl

[6] G. Segal, G. Wilson, Publ. Math. IHES, 61 (1985), 5–65 | DOI | MR | Zbl

[7] G. F. Helminck, S. V. Polenkova, $\tau$-Functions for the two-dimensional infinite Toda-hierarchy associated with a commutative algebra, in preparation

[8] A. Grothendieck, Bull. Soc. Math. France, 84 (1956), 319–384 | DOI | MR | Zbl