@article{TMF_2008_155_1_a13,
author = {L. Feher and B. G. Pusztai},
title = {Hamiltonian reductions of free particles under polar actions of compact {Lie} groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {161--176},
year = {2008},
volume = {155},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a13/}
}
TY - JOUR AU - L. Feher AU - B. G. Pusztai TI - Hamiltonian reductions of free particles under polar actions of compact Lie groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2008 SP - 161 EP - 176 VL - 155 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a13/ LA - ru ID - TMF_2008_155_1_a13 ER -
L. Feher; B. G. Pusztai. Hamiltonian reductions of free particles under polar actions of compact Lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 161-176. http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a13/
[1] D. Kazhdan, B. Kostant, S. Sternberg, Comm. Pure Appl. Math., 31:4 (1978), 481–507 | DOI | MR | Zbl
[2] P. I. Etingof, I. B. Frenkel, A. A. Kirillov Jr., Duke Math. J., 80:1 (1995), 59–90 ; arXiv: hep-th/9407047 | DOI | MR | Zbl
[3] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR
[4] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94:6 (1983), 313–404 | DOI | MR
[5] J. Gibbons, T. Hermsen, Physica D, 11:3 (1984), 337–348 | DOI | MR | Zbl
[6] N. Nekrasov, “Infinite-dimensional algebras many-body systems and gauge theories”, Moscow Seminar in Mathematical Physics, AMS Transl. Ser. 2, 191, eds. A. Yu. Morozov, M. A. Olshanetsky, Amer. Math. Soc., Providence, RI, 1999, 263–299 | MR | Zbl
[7] N. Reshetikhin, Lett. Math. Phys., 63:1 (2003), 55–71 ; arXiv: math.QA/0202245 | DOI | MR | Zbl
[8] D. Alekseevsky, A. Kriegl, M. Losik, P. W. Michor, Publ. Math. Debrecen, 62:3–4 (2003), 247–276 ; arXiv: math.DG/0102159 | MR | Zbl
[9] A. Oblomkov, Adv. Math., 186:1 (2004), 153–180 ; arXiv: math.RT/0202076 | DOI | MR | Zbl
[10] S. Hochgerner, Singular cotangent bundle reduction and spin Calogero–Moser systems, arXiv: math.SG/0411068 | MR
[11] L. Fehér, B. G. Pusztai, Nucl. Phys. B, 734:3 (2006), 304–325 ; arXiv: math-ph/0507062 | DOI | MR | Zbl
[12] L. Fehér, B. G. Pusztai, Nucl. Phys. B, 751:3 (2006), 436–458 ; arXiv: math-ph/0604073 | DOI | MR | Zbl
[13] L. Fehér, B. G. Pusztai, Lett. Math. Phys., 79:3 (2007), 263–277 ; arXiv: math-ph/0609085 | DOI | MR | Zbl
[14] R. Palais, C.-L. Terng, Trans. Amer. Math. Soc., 300:2 (1987), 771–789 | DOI | MR | Zbl
[15] L. Conlon, J. Differential Geom., 5 (1971), 135–147 | DOI | MR | Zbl
[16] J. Szenthe, Period. Math. Hungar., 15:4 (1984), 281–299 | DOI | MR | Zbl
[17] E. Heintze, R. Palais, C.-L. Terng, G. Thorbergsson, “Hyperpolar actions on symmetric spaces”, Geometry, Topology and Physics for Raoul Bott, Conf. Proc. Lecture Notes Geom. Topology, IV, ed. S.-T. Yau, International Press, Cambridge, MA, 1995, 214–245 | MR | Zbl
[18] A. Kollross, Polar actions on symmetric spaces, arXiv: math.DG/0506312 | MR
[19] S. Hochgerner, Spinning particles in a Yang–Mills field, arXiv: math.SG/0602062
[20] Gruppy Li i algebry Li – 1, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 20, eds. A. L. Onischik, R. V. Gamkrelidze, VINITI, M., 1988 | MR | MR | Zbl
[21] J.-P. Ortega, T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progr. Math., 222, Birkhäuser, Boston, MA, 2004 | MR | Zbl
[22] S. Tanimura, T. Iwai, J. Math. Phys., 41:4 (2000), 1814–1842 ; arXiv: math-ph/9907005 | DOI | MR | Zbl
[23] N. P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer Monogr. Math., Springer, New York, 1998 | DOI | MR | Zbl
[24] S. Helgason, Groups and Geometric Analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | Zbl
[25] A. W. Knapp, Lie Groups Beyond an Introduction, Progr. Math., 140, Birkhäuser, Boston, MA, 2002 | MR | Zbl
[26] L. Fehér, B. G. Pusztai, On the self-adjointness of certain reduced Laplace–Beltrami operators, (to appear) arXiv: 0707.2708 | MR
[27] G. Kunstatter, Class. Quant. Grav., 9:6 (1992), 1469–1485 | DOI | MR | Zbl
[28] L. Fehér, B. G. Pusztai, Twisted spin Sutherland models from quantum Hamiltonian reduction, , submitted to J. Phys. A arXiv: 0711.4015 | MR