Dual $R$-matrix integrability
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 147-160

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the $R$-operator on a Lie algebra $\mathfrak{g}$ satisfying the modified classical Yang–Baxter equation, we define two sets of functions that mutually commute with respect to the initial Lie–Poisson bracket on $\mathfrak{g}^*$. We consider examples of the Lie algebras $\mathfrak{g}$ with the Kostant–Adler–Symes and triangular decompositions, their $R$-operators, and the corresponding two sets of mutually commuting functions in detail. We answer the question for which $R$-operators the constructed sets of functions also commute with respect to the $R$-bracket. We briefly discuss the Euler–Arnold-type integrable equations for which the constructed commutative functions constitute the algebra of first integrals.
Keywords: Lie algebra, classical $R$-matrix, classical integrable system.
@article{TMF_2008_155_1_a12,
     author = {T. V. Skrypnik},
     title = {Dual $R$-matrix integrability},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {147--160},
     publisher = {mathdoc},
     volume = {155},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a12/}
}
TY  - JOUR
AU  - T. V. Skrypnik
TI  - Dual $R$-matrix integrability
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 147
EP  - 160
VL  - 155
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a12/
LA  - ru
ID  - TMF_2008_155_1_a12
ER  - 
%0 Journal Article
%A T. V. Skrypnik
%T Dual $R$-matrix integrability
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 147-160
%V 155
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a12/
%G ru
%F TMF_2008_155_1_a12
T. V. Skrypnik. Dual $R$-matrix integrability. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 147-160. http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a12/