Dual $R$-matrix integrability
Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 147-160
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the $R$-operator on a Lie algebra $\mathfrak{g}$ satisfying the modified
classical Yang–Baxter equation, we define two sets of functions that
mutually commute with respect to the initial Lie–Poisson bracket on $\mathfrak{g}^*$.
We consider examples of the Lie algebras $\mathfrak{g}$ with the Kostant–Adler–Symes
and triangular decompositions, their $R$-operators, and the corresponding two
sets of mutually commuting functions in detail. We answer the question for
which $R$-operators the constructed sets of functions also commute with
respect to the $R$-bracket. We briefly discuss the Euler–Arnold-type
integrable equations for which the constructed commutative functions
constitute the algebra of first integrals.
Keywords:
Lie algebra, classical $R$-matrix, classical integrable system.
@article{TMF_2008_155_1_a12,
author = {T. V. Skrypnik},
title = {Dual $R$-matrix integrability},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {147--160},
publisher = {mathdoc},
volume = {155},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a12/}
}
T. V. Skrypnik. Dual $R$-matrix integrability. Teoretičeskaâ i matematičeskaâ fizika, Tome 155 (2008) no. 1, pp. 147-160. http://geodesic.mathdoc.fr/item/TMF_2008_155_1_a12/