Factorizable ribbon quantum groups in logarithmic conformal field
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 3, pp. 510-535 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the properties of quantum groups occurring as the Kazhdan–Lusztig dual to logarithmic conformal field theory models. These quantum groups at even roots of unity are not quasitriangular but are factorizable and have a ribbon structure; the modular group representation on their center coincides with the representation on generalized characters of the chiral algebra in logarithmic conformal field models.
Keywords: quantum group, factorizable structure, ribbon structure, modular group, Grothendieck ring, logarithmic conformal field theory.
Mots-clés : Kazhdan–Lusztig correspondence
@article{TMF_2008_154_3_a6,
     author = {A. M. Semikhatov},
     title = {Factorizable ribbon quantum groups in logarithmic conformal field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {510--535},
     year = {2008},
     volume = {154},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a6/}
}
TY  - JOUR
AU  - A. M. Semikhatov
TI  - Factorizable ribbon quantum groups in logarithmic conformal field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 510
EP  - 535
VL  - 154
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a6/
LA  - ru
ID  - TMF_2008_154_3_a6
ER  - 
%0 Journal Article
%A A. M. Semikhatov
%T Factorizable ribbon quantum groups in logarithmic conformal field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 510-535
%V 154
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a6/
%G ru
%F TMF_2008_154_3_a6
A. M. Semikhatov. Factorizable ribbon quantum groups in logarithmic conformal field. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 3, pp. 510-535. http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a6/

[1] L. Alvarez-Gaumé, C. Gomez, G. Sierra, Phys. Lett. B, 220:1–2 (1989), 142–152 | DOI | MR | Zbl

[2] G. Moore, N. Reshetikhin, Nucl. Phys. B, 328:3 (1989), 557–574 | DOI | MR

[3] V. Pasquier, H. Saleur, Nucl. Phys. B, 330:2–3 (1990), 523–556 | DOI | MR

[4] G. Mack, V. Schomerus, Comm. Math. Phys., 134:1 (1990), 139–196 | DOI | MR | Zbl

[5] D. Kazhdan, G. Lusztig, J. Amer. Math. Soc., 6:4 (1993), 905–947 ; 949–1011 ; 7:2 (1994), 335–381 ; 383–453 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl

[6] M. Finkelberg, Geom. Funct. Anal., 6:2 (1996), 249–267 | DOI | MR | Zbl

[7] V. Gurarie, Nucl. Phys. B, 410:3 (1993), 535–549 ; arXiv: hep-th/9303160 | DOI | MR | Zbl

[8] M. R. Gaberdiel, H. G. Kausch, Phys. Lett. B, 386:1–4 (1996), 131–137 ; arXiv: hep-th/9606050 | DOI | MR

[9] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Comm. Math. Phys., 265:1 (2006), 47–93 ; arXiv: hep-th/0504093 | DOI | MR | Zbl

[10] A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, B. L. Feigin, TMF, 148:3 (2006), 398–427 ; arXiv: math/0512621 | DOI | MR | Zbl

[11] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, J. Math. Phys., 48:3 (2007), 032303 ; arXiv: math/0606506 | DOI | MR | Zbl

[12] C. Gomez, M. Ruiz-Altaba, G. Sierra, Quantum Groups in Two-Dimensional Physics, Cambridge University Press, Cambridge, 1996 | MR | Zbl

[13] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Nucl. Phys. B, 757:3 (2006), 303–343 ; arXiv: hep-th/0606196 | DOI | MR | Zbl

[14] B. L. Feigin, A. M. Semikhatov, Nucl. Phys. B, 610:3 (2001), 489–530 ; arXiv: hep-th/0102078 | DOI | MR | Zbl

[15] B. L. Feigin, A. M. Semikhatov, Nucl. Phys. B, 698:3 (2004), 409–449 ; arXiv: math/0401164 | DOI | MR | Zbl

[16] G. Felder, Nucl. Phys. B, 317:1 (1989), 215–236 | DOI | MR

[17] P. Bouwknegt, J. McCarthy, K. Pilch, Lett. Math. Phys., 23:3 (1991), 193–204 ; arXiv: hep-th/9108023 | DOI | MR | Zbl

[18] M. A. I. Flohr, Internat. J. Modern Phys. A, 11:22 (1996), 4147–4172 ; arXiv: hep-th/9509166 | DOI | MR | Zbl

[19] J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, Comm. Math. Phys., 247:3 (2004), 713–742 ; arXiv: hep-th/0306274 | DOI | MR | Zbl

[20] M. Flohr, M. R. Gaberdiel, J. Phys. A, 39:8 (2006), 1955–1967 ; arXiv: hep-th/0509075 | DOI | MR | Zbl | MR

[21] V. Lyubashenko, Comm. Math. Phys., 172:3 (1995), 467–516 ; ; “Modular properties of ribbon abelian categories”, Proc. 2nd Gauss symposium. Conference A: Mathematics and theoretical physics (Munich, Germany, August 2–7, 1993), Symposia Gaussiana, Berlin–New York, Walter de Gruyter, 1995, 529–579 ; ; J. Pure Appl. Algebra, 98:3 (1995), 279–327 arXiv: hep-th/9405167arXiv: hep-th/9405168 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[22] V. Lyubashenko, S. Majid, J. Algebra, 166:3 (1994), 506–528 | DOI | MR | Zbl

[23] T. Kerler, Comm. Math. Phys., 168:2 (1995), 353–388 ; arXiv: hep-th/9402017 | DOI | MR | Zbl

[24] M. R. Gaberdiel, H. G. Kausch, Nucl. Phys. B, 477:1 (1996), 293–318 ; arXiv: hep-th/9604026 | DOI | MR

[25] M. R. Gaberdiel, Internat. J. Modern Phys. A, 18:25 (2003), 4593–4638 ; arXiv: hep-th/0111260 | DOI | MR | Zbl

[26] H. Eberle, M. Flohr, J. Phys. A, 39:49 (2006), 15245–15286 ; arXiv: hep-th/0604097 | DOI | MR | Zbl

[27] M. R. Gaberdiel, H. G. Kausch, Nucl. Phys. B, 538:3 (1999), 631–658 ; arXiv: hep-th/9807091 | DOI | MR | Zbl

[28] J. Fjelstad, J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, Nucl. Phys. B, 633:3 (2002), 379–413 ; arXiv: hep-th/0201091 | DOI | MR | Zbl

[29] K. Kassel, Kvantovye gruppy, FAZIS, M., 1999 | MR | Zbl

[30] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969 | MR | Zbl

[31] D. E. Radford, J. Algebra, 163:3 (1994), 583–622 | DOI | MR | Zbl

[32] D. E. Radford, J. Algebra, 157:2 (1993), 285–315 | DOI | MR | Zbl

[33] J. Fuchs, “On non-semisimple fusion rules and tensor categories”, Contemp. Math., to appear | MR

[34] M. Flohr, H. Knuth, On Verlinde-like formulas in $c_{p,1}$ logarithmic conformal field theories, arXiv: 0705.0545

[35] K. Erdmann, E. L. Green, N. Snashall, R. Taillefer, J. Pure Appl. Algebra, 204:2 (2006), 413–454 ; arXiv: math/0410017 | DOI | MR | Zbl

[36] G. Gotz, T. Quella, V. Schomerus, J. Algebra, 312:2 (2007), 829–848 ; arXiv: hep-th/0504234 | DOI | MR | Zbl

[37] T. Quella, V. Schomerus, JHEP, 9 (2007), 085 ; Free fermion resolution of supergroup WZNW models, arXiv: 0706.0744 | DOI | MR

[38] H. G. Kausch, Phys. Lett. B, 259:4 (1991), 448–455 | DOI | MR

[39] N. Yu. Reshetikhin, M. A. Semenov-Tian-Shansky, J. Geom. Phys., 5:4 (1988), 533–550 | DOI | MR | Zbl

[40] V. G. Drinfeld, Algebra i analiz, 1:2 (1989), 30–46 | MR | Zbl

[41] H.-J. Schneider, Proc. Amer. Math. Soc., 129:7 (2001), 1891–1898 | DOI | MR | Zbl

[42] V. G. Drinfeld, “Quantum groups”, Proc. Int. Congr. Math. (Berkeley, 1986), Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR | Zbl

[43] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[44] A. M. Gainutdinov, I. Yu. Tipunin, Radford, Drinfeld, and Cardy boundary states in $(1,p)$ logarithmic conformal field models, arXiv: 0711.3430 | MR

[45] N. Yu. Reshetikhin, V. G. Turaev, Comm. Math. Phys., 127:1 (1990), 1–26 ; Invent. Math., 103:1 (1991), 547–597 | DOI | MR | Zbl | DOI | MR | Zbl

[46] A. Lachowska, J. Algebra, 262:2 (2003), 313–331 ; arXiv: math/0107098 | DOI | MR | Zbl

[47] R. Bezrukavnikov, A. Lachowska, The small quantum group and the Springer resolution, arXiv: math/0609819 | MR

[48] I. Cherednik, Double Affine Hecke Algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, 2005 ; Introduction to double Hecke algebras, arXiv: math/0404307 | MR | Zbl

[49] G. Mutafyan, I. Tipunin, Double affine Hecke algebra in logarithmic conformal field theory, arXiv: 0707.1625 | MR

[50] A. M. Semikhatov, TMF, 152:3 (2007), 291–346 ; arXiv: hep-th/0701279 | DOI | MR

[51] D. E. Radford, J. Algebra, 151:1 (1992), 1–11 | DOI | MR | Zbl

[52] Y. Arike, Symmetric linear functions of the restricted quantum group $\bar{U}_qsl_2(\mathbb{C})$, arXiv: 0706.1113 | MR

[53] P. Furlan, L. Hadjiivanov, I. Todorov, Zero modes' fusion ring and braid group representations for the extended chiral $su(2)$ WZNW model, arXiv: 0710.1063 | MR

[54] D. E. Radford, S. Westerich, J. Algebra, 301 (2006), 1–34 | DOI | MR | Zbl

[55] A. Yu. Alekseev, D. V. Gluschenkov, A. V. Lyakhovskaya, Algebra i analiz, 6:5 (1994), 88–125 | Zbl