Mots-clés : Kazhdan–Lusztig correspondence
@article{TMF_2008_154_3_a6,
author = {A. M. Semikhatov},
title = {Factorizable ribbon quantum groups in logarithmic conformal field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {510--535},
year = {2008},
volume = {154},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a6/}
}
A. M. Semikhatov. Factorizable ribbon quantum groups in logarithmic conformal field. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 3, pp. 510-535. http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a6/
[1] L. Alvarez-Gaumé, C. Gomez, G. Sierra, Phys. Lett. B, 220:1–2 (1989), 142–152 | DOI | MR | Zbl
[2] G. Moore, N. Reshetikhin, Nucl. Phys. B, 328:3 (1989), 557–574 | DOI | MR
[3] V. Pasquier, H. Saleur, Nucl. Phys. B, 330:2–3 (1990), 523–556 | DOI | MR
[4] G. Mack, V. Schomerus, Comm. Math. Phys., 134:1 (1990), 139–196 | DOI | MR | Zbl
[5] D. Kazhdan, G. Lusztig, J. Amer. Math. Soc., 6:4 (1993), 905–947 ; 949–1011 ; 7:2 (1994), 335–381 ; 383–453 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl
[6] M. Finkelberg, Geom. Funct. Anal., 6:2 (1996), 249–267 | DOI | MR | Zbl
[7] V. Gurarie, Nucl. Phys. B, 410:3 (1993), 535–549 ; arXiv: hep-th/9303160 | DOI | MR | Zbl
[8] M. R. Gaberdiel, H. G. Kausch, Phys. Lett. B, 386:1–4 (1996), 131–137 ; arXiv: hep-th/9606050 | DOI | MR
[9] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Comm. Math. Phys., 265:1 (2006), 47–93 ; arXiv: hep-th/0504093 | DOI | MR | Zbl
[10] A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, B. L. Feigin, TMF, 148:3 (2006), 398–427 ; arXiv: math/0512621 | DOI | MR | Zbl
[11] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, J. Math. Phys., 48:3 (2007), 032303 ; arXiv: math/0606506 | DOI | MR | Zbl
[12] C. Gomez, M. Ruiz-Altaba, G. Sierra, Quantum Groups in Two-Dimensional Physics, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[13] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Nucl. Phys. B, 757:3 (2006), 303–343 ; arXiv: hep-th/0606196 | DOI | MR | Zbl
[14] B. L. Feigin, A. M. Semikhatov, Nucl. Phys. B, 610:3 (2001), 489–530 ; arXiv: hep-th/0102078 | DOI | MR | Zbl
[15] B. L. Feigin, A. M. Semikhatov, Nucl. Phys. B, 698:3 (2004), 409–449 ; arXiv: math/0401164 | DOI | MR | Zbl
[16] G. Felder, Nucl. Phys. B, 317:1 (1989), 215–236 | DOI | MR
[17] P. Bouwknegt, J. McCarthy, K. Pilch, Lett. Math. Phys., 23:3 (1991), 193–204 ; arXiv: hep-th/9108023 | DOI | MR | Zbl
[18] M. A. I. Flohr, Internat. J. Modern Phys. A, 11:22 (1996), 4147–4172 ; arXiv: hep-th/9509166 | DOI | MR | Zbl
[19] J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, Comm. Math. Phys., 247:3 (2004), 713–742 ; arXiv: hep-th/0306274 | DOI | MR | Zbl
[20] M. Flohr, M. R. Gaberdiel, J. Phys. A, 39:8 (2006), 1955–1967 ; arXiv: hep-th/0509075 | DOI | MR | Zbl | MR
[21] V. Lyubashenko, Comm. Math. Phys., 172:3 (1995), 467–516 ; ; “Modular properties of ribbon abelian categories”, Proc. 2nd Gauss symposium. Conference A: Mathematics and theoretical physics (Munich, Germany, August 2–7, 1993), Symposia Gaussiana, Berlin–New York, Walter de Gruyter, 1995, 529–579 ; ; J. Pure Appl. Algebra, 98:3 (1995), 279–327 arXiv: hep-th/9405167arXiv: hep-th/9405168 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl
[22] V. Lyubashenko, S. Majid, J. Algebra, 166:3 (1994), 506–528 | DOI | MR | Zbl
[23] T. Kerler, Comm. Math. Phys., 168:2 (1995), 353–388 ; arXiv: hep-th/9402017 | DOI | MR | Zbl
[24] M. R. Gaberdiel, H. G. Kausch, Nucl. Phys. B, 477:1 (1996), 293–318 ; arXiv: hep-th/9604026 | DOI | MR
[25] M. R. Gaberdiel, Internat. J. Modern Phys. A, 18:25 (2003), 4593–4638 ; arXiv: hep-th/0111260 | DOI | MR | Zbl
[26] H. Eberle, M. Flohr, J. Phys. A, 39:49 (2006), 15245–15286 ; arXiv: hep-th/0604097 | DOI | MR | Zbl
[27] M. R. Gaberdiel, H. G. Kausch, Nucl. Phys. B, 538:3 (1999), 631–658 ; arXiv: hep-th/9807091 | DOI | MR | Zbl
[28] J. Fjelstad, J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, Nucl. Phys. B, 633:3 (2002), 379–413 ; arXiv: hep-th/0201091 | DOI | MR | Zbl
[29] K. Kassel, Kvantovye gruppy, FAZIS, M., 1999 | MR | Zbl
[30] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969 | MR | Zbl
[31] D. E. Radford, J. Algebra, 163:3 (1994), 583–622 | DOI | MR | Zbl
[32] D. E. Radford, J. Algebra, 157:2 (1993), 285–315 | DOI | MR | Zbl
[33] J. Fuchs, “On non-semisimple fusion rules and tensor categories”, Contemp. Math., to appear | MR
[34] M. Flohr, H. Knuth, On Verlinde-like formulas in $c_{p,1}$ logarithmic conformal field theories, arXiv: 0705.0545
[35] K. Erdmann, E. L. Green, N. Snashall, R. Taillefer, J. Pure Appl. Algebra, 204:2 (2006), 413–454 ; arXiv: math/0410017 | DOI | MR | Zbl
[36] G. Gotz, T. Quella, V. Schomerus, J. Algebra, 312:2 (2007), 829–848 ; arXiv: hep-th/0504234 | DOI | MR | Zbl
[37] T. Quella, V. Schomerus, JHEP, 9 (2007), 085 ; Free fermion resolution of supergroup WZNW models, arXiv: 0706.0744 | DOI | MR
[38] H. G. Kausch, Phys. Lett. B, 259:4 (1991), 448–455 | DOI | MR
[39] N. Yu. Reshetikhin, M. A. Semenov-Tian-Shansky, J. Geom. Phys., 5:4 (1988), 533–550 | DOI | MR | Zbl
[40] V. G. Drinfeld, Algebra i analiz, 1:2 (1989), 30–46 | MR | Zbl
[41] H.-J. Schneider, Proc. Amer. Math. Soc., 129:7 (2001), 1891–1898 | DOI | MR | Zbl
[42] V. G. Drinfeld, “Quantum groups”, Proc. Int. Congr. Math. (Berkeley, 1986), Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR | Zbl
[43] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl
[44] A. M. Gainutdinov, I. Yu. Tipunin, Radford, Drinfeld, and Cardy boundary states in $(1,p)$ logarithmic conformal field models, arXiv: 0711.3430 | MR
[45] N. Yu. Reshetikhin, V. G. Turaev, Comm. Math. Phys., 127:1 (1990), 1–26 ; Invent. Math., 103:1 (1991), 547–597 | DOI | MR | Zbl | DOI | MR | Zbl
[46] A. Lachowska, J. Algebra, 262:2 (2003), 313–331 ; arXiv: math/0107098 | DOI | MR | Zbl
[47] R. Bezrukavnikov, A. Lachowska, The small quantum group and the Springer resolution, arXiv: math/0609819 | MR
[48] I. Cherednik, Double Affine Hecke Algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, 2005 ; Introduction to double Hecke algebras, arXiv: math/0404307 | MR | Zbl
[49] G. Mutafyan, I. Tipunin, Double affine Hecke algebra in logarithmic conformal field theory, arXiv: 0707.1625 | MR
[50] A. M. Semikhatov, TMF, 152:3 (2007), 291–346 ; arXiv: hep-th/0701279 | DOI | MR
[51] D. E. Radford, J. Algebra, 151:1 (1992), 1–11 | DOI | MR | Zbl
[52] Y. Arike, Symmetric linear functions of the restricted quantum group $\bar{U}_qsl_2(\mathbb{C})$, arXiv: 0706.1113 | MR
[53] P. Furlan, L. Hadjiivanov, I. Todorov, Zero modes' fusion ring and braid group representations for the extended chiral $su(2)$ WZNW model, arXiv: 0710.1063 | MR
[54] D. E. Radford, S. Westerich, J. Algebra, 301 (2006), 1–34 | DOI | MR | Zbl
[55] A. Yu. Alekseev, D. V. Gluschenkov, A. V. Lyakhovskaya, Algebra i analiz, 6:5 (1994), 88–125 | Zbl