The classical hyperbolic Askey–Wilson dynamics without bound states
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 3, pp. 492-509 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an explicit action–angle map for the classical hyperbolic Askey–Wilson dynamics (also known as the relativistic $BC_1$ Calogero–Moser system), restricting the four coupling constants such that no bound states occur. Its features are exact classical analogues of features previously obtained for the quantum eigenfunction transformation. Our construction involves neither scattering theory nor a Lax matrix; instead, it is based on a certain self-duality identity.
Keywords: hyperbolic Askey–Wilson dynamics, classical relativistic $BC_1$ Calogero–Moser system, self-duality identity.
Mots-clés : action–angle map
@article{TMF_2008_154_3_a5,
     author = {S. Ruijsenaars},
     title = {The classical hyperbolic {Askey{\textendash}Wilson} dynamics without bound states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {492--509},
     year = {2008},
     volume = {154},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a5/}
}
TY  - JOUR
AU  - S. Ruijsenaars
TI  - The classical hyperbolic Askey–Wilson dynamics without bound states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 492
EP  - 509
VL  - 154
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a5/
LA  - ru
ID  - TMF_2008_154_3_a5
ER  - 
%0 Journal Article
%A S. Ruijsenaars
%T The classical hyperbolic Askey–Wilson dynamics without bound states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 492-509
%V 154
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a5/
%G ru
%F TMF_2008_154_3_a5
S. Ruijsenaars. The classical hyperbolic Askey–Wilson dynamics without bound states. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 3, pp. 492-509. http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a5/

[1] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR

[2] S. N. M. Ruijsenaars, “Systems of Calogero–Moser type”, Particles and Fields (Banff, Alberta, Canada, 1994), CRM Ser. Math. Phys., eds. G. Semenoff, L. Vinet, Springer, New York, 1999, 251–352 | MR

[3] V. I. Inozemtsev, Lett. Math. Phys., 17:1 (1989), 11–17 | DOI | MR | Zbl

[4] E. d'Hoker, D. H. Phong, Nucl. Phys. B, 530:3 (1998), 537–610 | DOI | MR | Zbl

[5] A. J. Bordner, E. Corrigan, R. Sasaki, Progr. Theoret. Phys., 102:3 (1999), 499–529 | DOI | MR

[6] S. N. M. Ruijsenaars, Comm. Math. Phys., 110:2 (1987), 191–213 | DOI | MR | Zbl

[7] M. Bruschi, F. Calogero, Comm. Math. Phys., 109:3 (1987), 481–492 | DOI | MR | Zbl

[8] S. N. M. Ruijsenaars, Comm. Math. Phys., 115:1 (1988), 127–165 | DOI | MR | Zbl

[9] V. Fock, A. Gorsky, N. Nekrasov, V. Rubtsov, JHEP, 7 (2000), 28 | DOI | MR | Zbl

[10] R. Askey, J. Wilson, Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials, Mem. Amer. Math. Soc., 319, Amer. Math. Soc., Providence, RI, 1985 | MR | Zbl

[11] S. N. M. Ruijsenaars, Comm. Math. Phys., 206:3 (1999), 639–690 | DOI | MR | Zbl

[12] S. N. M. Ruijsenaars, J. Comput. Appl. Math., 178:1–2 (2005), 393–417 | DOI | MR | Zbl

[13] S. N. M. Ruijsenaars, “Integrable $BC_N$ analytic difference operators: hidden parameter symmetries and eigenfunctions”, New trends in Integrability and Partial Solvability, Proceedings Cadiz 2002 NATO Advanced Research Workshop, NATO Sci. Ser. II Math. Phys. Chem., eds. A. B. Shabat, A. González-López, M. Mañas, L. Martínez Alonso, M. A. Rodríguez, Kluwer, Dordrecht, 2004, 217–261 | MR | Zbl

[14] A. Zhedanov, A. Korovnichenko, J. Phys. A, 35:27 (2002), 5767–5780 | DOI | MR | Zbl

[15] S. N. M. Ruijsenaars, H. Schneider, Ann. Phys., 170:2 (1986), 370–405 | DOI | MR | Zbl

[16] A. Degasperis, S. N. M. Ruijsenaars, Ann. Phys., 293:1 (2001), 92–109 | DOI | MR | Zbl