Commutator identities on associative algebras and the integrability of
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 3, pp. 477-491 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that commutator identities on associative algebras generate solutions of the linearized versions of integrable equations. In addition, we introduce a special dressing procedure in a class of integral operators that allows deriving both the nonlinear integrable equation itself and its Lax pair from such a commutator identity. The problem of constructing new integrable nonlinear evolution equations thus reduces to the problem of constructing commutator identities on associative algebras.
Keywords: nonlinear evolution equation
Mots-clés : Lax pair.
@article{TMF_2008_154_3_a4,
     author = {A. K. Pogrebkov},
     title = {Commutator identities on associative algebras and the integrability of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {477--491},
     year = {2008},
     volume = {154},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a4/}
}
TY  - JOUR
AU  - A. K. Pogrebkov
TI  - Commutator identities on associative algebras and the integrability of
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 477
EP  - 491
VL  - 154
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a4/
LA  - ru
ID  - TMF_2008_154_3_a4
ER  - 
%0 Journal Article
%A A. K. Pogrebkov
%T Commutator identities on associative algebras and the integrability of
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 477-491
%V 154
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a4/
%G ru
%F TMF_2008_154_3_a4
A. K. Pogrebkov. Commutator identities on associative algebras and the integrability of. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 3, pp. 477-491. http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a4/

[1] A. K. Pogrebkov, “On time evolutions associated with the nonstationary Schrödinger equation”, L. D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, ed. M. Semenov-Tian-Shansky, 2000, 239–255 ; arXiv: math-ph/9902014 | MR | Zbl

[2] B. B. Kadomtsev, V. I. Petviashvili, Dokl. AN SSSR, 192 (1970), 753–756 | Zbl

[3] M. Boiti, F. Pempinelli, A. K. Pogrebkov, M. K. Polivanov, TMF, 93:2 (1992), 181–210 | DOI | MR | Zbl

[4] M. Boiti, F. Pempinelli, A. K. Pogrebkov, M. C. Polivanov, Inverse Problems, 8:3 (1992), 331–364 | DOI | MR | Zbl

[5] M. Boiti, F. Pempinelli, A. Pogrebkov, J. Math. Phys., 35:9 (1994), 4683–4718 | DOI | MR | Zbl

[6] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, Inverse Problems, 17 (2001), 937–957 | DOI | MR | Zbl

[7] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, J. Math. Phys., 44:8 (2003), 3309–3340 | DOI | MR | Zbl

[8] M. Boiti, J. Leon, F. Pempinelli, Inverse Problems, 3:1 (1987), 37–49 | DOI | MR | Zbl

[9] T. I. Garagash, A. K. Pogrebkov, TMF, 102:2 (1995), 163–182 | DOI | MR | Zbl

[10] T. I. Garagash, A. K. Pogrebkov, TMF, 109:2 (1996), 163–174 | DOI | MR | Zbl

[11] A. Davey, K. Stewartson, Proc. R. Soc. Lond. Ser. A, 338:1613 (1974), 101–110 | DOI | MR | Zbl

[12] A. P. Veselov, S. P. Novikov, DAN SSSR, 30 (1984), 588–591 | Zbl

[13] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems: Classical Theory and Quantum Theory (Kyoto, 1981), eds. M. Jimbo, T. Miwa, World Sci. Publishing, Singapore, 1983, 39–119 | MR | Zbl

[14] A. Yu. Orlov, E. I. Schulman, Lett. Math. Phys., 12:3 (1986), 171–179 | DOI | MR | Zbl

[15] A. Yu. Orlov, “Vertex operator, $\bar{\partial}$-problem, symmetries, variational identities, and Hamiltonian formalism for $(2+1)$ integrable systems”, Proc. Int. Workshop “Plasma Theory and Nonlinear and Turbulent Processes in Physics”, v. 1 (Kiev, 1987), eds. V. G. Bar'yakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, V. E. Zakharov, World Scientific, Singapore, 1988, 116–134 | MR | Zbl

[16] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 8 (1974), 226–235 | MR | Zbl

[17] V. S. Dryuma, Pisma v ZhETF, 19 (1974), 753–757

[18] M. J. Ablowitz, D. Bar Yacoov, A. S. Fokas, Stud. Appl. Math., 69:2 (1983), 135–143 | DOI | MR | Zbl

[19] V. E. Zakharov, S. V. Manakov, Sov. Sci. Rev., 1 (1979), 133–148

[20] S. V. Manakov, Phys. D, 3:1–2 (1981), 420–427 | DOI | Zbl

[21] A. S. Fokas, M. J. Ablowitz, Phys. Rev. Lett., 51:1 (1983), 7–10 | DOI | MR