$\mathbb Z$-graded loop Lie algebras, loop groups, and Toda equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 3, pp. 451-476 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider Toda equations associated with twisted loop groups. Such equations are specified by $\mathbb Z$-gradings of the corresponding twisted loop Lie algebras. We discuss the classification of Toda equations related to twisted loop Lie algebras with integrable $\mathbb Z$-gradings.
Keywords: Toda equation, loop group, $\mathbb Z$-graded loop Lie algebra.
@article{TMF_2008_154_3_a3,
     author = {Kh. Nirov and A. V. Razumov},
     title = {$\mathbb Z$-graded loop {Lie} algebras, loop groups, and {Toda} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {451--476},
     year = {2008},
     volume = {154},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a3/}
}
TY  - JOUR
AU  - Kh. Nirov
AU  - A. V. Razumov
TI  - $\mathbb Z$-graded loop Lie algebras, loop groups, and Toda equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 451
EP  - 476
VL  - 154
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a3/
LA  - ru
ID  - TMF_2008_154_3_a3
ER  - 
%0 Journal Article
%A Kh. Nirov
%A A. V. Razumov
%T $\mathbb Z$-graded loop Lie algebras, loop groups, and Toda equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 451-476
%V 154
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a3/
%G ru
%F TMF_2008_154_3_a3
Kh. Nirov; A. V. Razumov. $\mathbb Z$-graded loop Lie algebras, loop groups, and Toda equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 3, pp. 451-476. http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a3/

[1] A. N. Leznov, M. V. Savelev, Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[2] A. V. Razumov, M. V. Saveliev, Comm. Anal. Geom., 2 (1994), 461–511 ; arXiv: hep-th/9311167 | DOI | MR | Zbl

[3] A. V. Razumov, M. V. Saveliev, Lie Algebras, Geometry, and Toda-type Systems, Cambridge Lecture Notes in Phys., 8, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[4] A. N. Leznov, “The internal symmetry group and methods of field theory for integrating exactly soluble dynamic systems”, Group Theoretical Methods in Physics, Proc. Zvenigorod seminar (Zvenigorod, 1982), Harwood, New York, 1985, 443–457 | MR

[5] J.-L. Gervais, M. V. Saveliev, Nucl. Phys. B, 453:1–2 (1995), 449–476 ; arXiv: hep-th/9505047 | DOI | MR

[6] L. A. Ferreira, J.-L. Gervais, J. Sánchez Guillén, M. V. Saveliev, Nucl. Phys. B, 470:1–2 (1996), 236–288 ; arXiv: hep-th/9512105 | DOI | MR | Zbl

[7] A. G. Bueno, L. A. Ferreira, A. V. Razumov, Nucl. Phys. B, 626:3 (2002), 463–499 ; arXiv: hep-th/0105078 | DOI | MR | Zbl

[8] A. V. Razumov, M. V. Saveliev, “On some class of multidimensional nonlinear integrable systems”, Proc. II Int. A. D. Sakharov Conf. on Physics (Moscow, 1996), eds. I. M. Dremin, A. M. Semikhatov, World Scientific, Singapore, 1997, 547–551 ; arXiv: hep-th/9607017 | MR

[9] A. V. Razumov, M. V. Savelev, TMF, 112:2 (1997), 254–282 ; arXiv: hep-th/9609031 | DOI | MR | Zbl

[10] L. A. Ferreira, J. L. Miramontes, J. Sánchez Guillén, Nucl. Phys. B, 449:3 (1995), 631–679 ; arXiv: hep-th/9412127 | DOI | MR | Zbl

[11] C. R. Fernández-Pousa, M. V. Gallas, T. J. Hollowood, J. L. Miramontes, Nucl. Phys. B, 484:3 (1997), 609–630 ; arXiv: hep-th/9606032 | DOI | MR | Zbl

[12] A. V. Razumov, M. V. Saveliev, Nucl. Phys. B, 494:3 (1997), 657–686 ; arXiv: hep-th/9612081 | DOI | MR | Zbl

[13] A. V. Razumov, M. V. Saveliev, A. B. Zuevsky, “Non-abelian Toda equations associated with classical Lie groups”, Symmetries and Integrable Systems, ed. A. N. Sissakian, JINR, Dubna, 1999, 190–203 ; arXiv: math-ph/9909008 | MR

[14] Kh. S. Nirov, A. V. Razumov, “On classification of non-abelian Toda systems”, Geometrical an Topological Ideas in Modern Physics, ed. V. A. Petrov, IHEP, Protvino, 2002, 213–221 ; arXiv: nlin.SI/0305023 | MR

[15] E. Presli, G. Sigal, Gruppy petel, Mir, M., 1990 | MR | MR | Zbl

[16] Kh. S. Nirov, A. V. Razumov, Comm. Math. Phys., 267:3 (2006), 587–610 ; arXiv: math-ph/0504038 | DOI | MR | Zbl

[17] Kh. S. Nirov, A. V. Razumov, Nucl. Phys. B, 782:3 (2007), 241–275 ; arXiv: math-ph/0612054 | DOI | MR | Zbl

[18] R. Hamilton, Bull. Amer. Math. Soc., 7:1 (1982), 65–222 | DOI | MR | Zbl

[19] J. Milnor, “Remarks on infinite-dimensional Lie groups”, Relativity, Groups and Topology II, eds. B. S. DeWitt, R. Stora, North-Holland, Amsterdam, 1984, 1007–1057 | MR | Zbl

[20] A. L. Onischik, E. B. Vinberg, Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR | MR | Zbl

[21] V. G. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl

[22] E. B. Vinberg, V. V. Gorbatsevich, A. L. Onischik, Gruppy Li i algebry Li 3, Itogi nauki i tekhniki. Sovrem. probl. mat. Fundam. napravleniya. Itogi nauki i tekhn., 41, VINITI, M., 1990 | MR | Zbl

[23] I. M. Krichever, Prilozhenie k state: B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2(218) (1981), 72–77 | MR | Zbl

[24] A. V. Mikhailov, Physica D, 3:1–2 (1981), 73–117 | DOI | Zbl