Quantum Knizhnik–Zamolodchikov equation, totally symmetric
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 3, pp. 387-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present multiple-residue integral formulas for partial sums in the basis of link patterns of the polynomial solution of the level-$1$ $U_q(\widehat{\mathfrak{sl}_2})$ quantum Knizhnik–Zamolodchikov equation at arbitrary values of the quantum parameter $q$. These formulas allow rewriting and generalizing a recent conjecture of Di Francesco connecting these sums to generating polynomials for weighted totally symmetric self-complementary plane partitions. We reduce the corresponding conjectures to a single integral identity, yet to be proved.
Keywords: loop model, combinatorics, quantum integrability.
@article{TMF_2008_154_3_a0,
     author = {P. Zinn-Justin and Ph. Di Francesco},
     title = {Quantum {Knizhnik{\textendash}Zamolodchikov} equation, totally symmetric},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {387--408},
     year = {2008},
     volume = {154},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a0/}
}
TY  - JOUR
AU  - P. Zinn-Justin
AU  - Ph. Di Francesco
TI  - Quantum Knizhnik–Zamolodchikov equation, totally symmetric
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 387
EP  - 408
VL  - 154
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a0/
LA  - ru
ID  - TMF_2008_154_3_a0
ER  - 
%0 Journal Article
%A P. Zinn-Justin
%A Ph. Di Francesco
%T Quantum Knizhnik–Zamolodchikov equation, totally symmetric
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 387-408
%V 154
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a0/
%G ru
%F TMF_2008_154_3_a0
P. Zinn-Justin; Ph. Di Francesco. Quantum Knizhnik–Zamolodchikov equation, totally symmetric. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 3, pp. 387-408. http://geodesic.mathdoc.fr/item/TMF_2008_154_3_a0/

[1] P. Di Francesco, J. Stat. Mech., 2006, no. 9, P09008 ; arXiv: cond-mat/0607499 | DOI | MR

[2] P. Di Francesco, J. Stat. Mech., 2007, no. 1, P01024 ; arXiv: math-ph/0611012 | DOI | MR

[3] M. T. Batchelor, J. de Gier, B. Nienhuis, J. Phys. A, 34 (2001), L265–L270 ; arXiv: cond-mat/0101385 | DOI | MR | Zbl

[4] D. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press., Cambridge, 1999 | MR | Zbl

[5] A. V. Razumov, Yu. G. Stroganov, TMF, 138 (2004), 395–400 ; arXiv: math/0104216 | DOI | MR | Zbl

[6] P. Di Francesco, P. Zinn-Justin, Electron. J. Comb., 12:1 (2005), R6 ; arXiv: math-ph/0410061 | MR | Zbl

[7] A. G. Izergin, DAN SSSR, 297:2 (1987), 331–333 ; V. Korepin, Comm. Math. Phys., 86 (1982), 391–418 | MR | Zbl | DOI | MR | Zbl

[8] G. Kuperberg, Ann. Math. (2), 156:3 (2002), 835–866 ; arXiv: math/0008184 | DOI | MR | Zbl

[9] I. B. Frenkel, N. Yu. Reshetikhin, Comm. Math. Phys., 146:1 (1992), 1–60 | DOI | MR | Zbl

[10] V. Pasquier, Ann. Henri Poincaré, 7:3 (2006), 397–421 ; arXiv: cond-mat/0506075 | DOI | MR | Zbl

[11] P. Di Francesco, P. Zinn-Justin, J. Phys. A, 38:48 (2005), L815–L822 ; arXiv: math-ph/0508059 | DOI | MR | Zbl

[12] M. Kasatani, V. Pasquier, Comm. Math. Phys., 276:2 (2007), 397–435 ; arXiv: cond-mat/0608160 | DOI | MR | Zbl

[13] P. Di Francesco, J. Phys. A, 38 (2005), 6091–6120 ; ; J. Stat. Mech., 2005, no. 11, P11003 ; arXiv: math-ph/0504032v2arXiv: math-ph/0509011v3 | DOI | MR | Zbl | DOI

[14] D. Robbins, Math. Intelligencer, 13:2 (1991), 12–19 | DOI | MR | Zbl

[15] B. Lindström, Bull. London Math. Soc., 5 (1973), 85–90 ; I. Gessel, G. Viennot, Adv. Math., 58:3 (1985), 300–321 | DOI | MR | Zbl | DOI | MR | Zbl

[16] F. A. Smirnov, J. Phys. A, 19:10 (1986), L575–L578 | DOI | MR | Zbl

[17] M. Jimbo, T. Miwa, Algebraic Analysis of Solvable Lattice Models, CBMS Regional Conference Series in Mathematics, 85, AMS, Providence, RI, 1995 | MR | Zbl

[18] D. Zeilberger, Electron. J. Combin., 3:2 (1996), R13 ; arXiv: math/9407211 | MR | Zbl

[19] P. Zinn-Justin, Electron. J. Combin., 13:1 (2006), R110 ; arXiv: math/0607183 | MR | Zbl

[20] P. Di Francesco, P. Zinn-Justin, From orbital varieties to alternating sign matrices, arXiv: math-ph/0512047

[21] P. Zinn-Justin, Combinatorial point for higher spin loop models, arXiv: math-ph/0603018

[22] A. V. Razumov, Yu. G. Stroganov, J. Stat. Mech., 2006, no. 7, P07004 ; arXiv: math-ph/0605004 | DOI | MR

[23] A. V. Razumov, Yu. G. Stroganov, P. Zinn-Justin, J. Phys. A, 40:39 (2007), 11827–11847 ; arXiv: 0704.3542v3 | DOI | MR | Zbl