Mots-clés : soliton.
@article{TMF_2008_154_2_a7,
author = {S. A. Kordyukova},
title = {Korteweg{\textendash}de {Vries} hierarchy as an~asymptotic limit of {the~Boussinesq}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {294--304},
year = {2008},
volume = {154},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a7/}
}
S. A. Kordyukova. Korteweg–de Vries hierarchy as an asymptotic limit of the Boussinesq. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 294-304. http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a7/
[1] L. V. Ovsyannikov, “Lagranzhevy priblizheniya v teorii voln”, Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, Novosibirsk, 1985, 10–77 | MR | Zbl
[2] L. Debnath, Nonlinear Water Waves, Academic Press, Boston, MA, 1983 | MR | Zbl
[3] N. I. Makarenko, “The second long-wave approximation in the Cauchy–Poisson problem”, Dinamika sploshnoi sredy, no. 77, In-t gidrodinamiki AN SSSR, Novosibirsk, 1986, 56–72 ; W. Craig, Commun. Part. Diff. Equat., 10:8 (1985), 787–1003 ; T. Kano, T. Nishida, Osaka J. Math., 23:2 (1986), 389–413 ; Л. В. Овсянников, “К обоснованию теории мелкой воды”, Динамика сплошной среды, No 15, Ин-т гидродинамики АН СССР, Новосибирск, 1973, 104–125 | MR | Zbl | DOI | MR | Zbl | MR | Zbl | MR
[4] V. I. Karpman, E. M. Maslov, ZhETF, 73:2 (1977), 281–291 ; Е. М. Маслов, ТМФ, 42:3 (1980), 362–373 ; В. П. Маслов, Г. А. Омельянов, УМН, 36:3 (1981), 63–126 ; Сиб. матем. журн., 24:5 (1983), 172–182 ; А. Ньюэлл, “Обратное преобразование рассеяния”, Солитоны, ред. Р. Буллаф, Ф. Кодри, Мир, М., 1983, 193–269 ; Л. А. Калякин, ТМФ, 92:1 (1992), 62–76 | MR | DOI | MR | DOI | MR | Zbl | Zbl | MR | Zbl | MR | MR | Zbl | DOI | MR | Zbl
[5] V. A. Baikov, S. A. Kordyukova, Quaest. Math., 26 (2003), 1–14 ; S. A. Kordyukova, Nonlin. Dyn., 46:1–2 (2006), 73–85 | DOI | MR | Zbl | DOI | MR | Zbl
[6] S. Yu. Dobrokhotov, Dokl. AN SSSR, 292 (1987), 63–67 | MR | Zbl
[7] N. H. Ibragimov, R. L. Anderson, “Lie–Bäcklund symmetries: Representation by formal power series”, CRC Handbook of Lie Group Analysis of Differential Equation, Vol. 3. New Trends in Theoretical Developments and Computational Methods, ed. N. H. Ibragimov, CRC Press, Boca Raton, 1996, 3–29 | MR | Zbl
[8] J. Kodama, Phys. Lett. A, 112:5 (1985), 193–196 ; G. I. Burde, Nonlinearity, 18 (2005), 1443–1461 | DOI | MR | DOI | MR | Zbl
[9] A. Naife, Metody vozmuschenii, Mir, M., 1976 | MR | MR | Zbl
[10] L. A. Kalyakin, Matem. zametki, 50:5 (1991), 32–42 | DOI | MR | Zbl
[11] A. Degasperis, S. V. Manakov, P. M. Santini, Physica D, 100 (1997), 187–211 | DOI | MR | Zbl