Korteweg–de Vries hierarchy as an asymptotic limit of the Boussinesq
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 294-304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the model of surface waves, we perform an asymptotic analysis with respect to a small parameter $\varepsilon$ for large times where corrections to the approximation described by the Korteweg–de Vries equation must be taken into account. We reveal the appearance of the Korteweg–de Vries hierarchy, which ensures the construction of an asymptotic representation up to the times $t\approx\varepsilon^{-2}$, where the Korteweg–de Vries approximation becomes inapplicable.
Keywords: nonlinear equation, small parameter, potentiated Korteweg–de Vries equation, Lie–Bäcklund canonical operator, multiscale method, asymptotic representation
Mots-clés : soliton.
@article{TMF_2008_154_2_a7,
     author = {S. A. Kordyukova},
     title = {Korteweg{\textendash}de {Vries} hierarchy as an~asymptotic limit of {the~Boussinesq}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {294--304},
     year = {2008},
     volume = {154},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a7/}
}
TY  - JOUR
AU  - S. A. Kordyukova
TI  - Korteweg–de Vries hierarchy as an asymptotic limit of the Boussinesq
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 294
EP  - 304
VL  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a7/
LA  - ru
ID  - TMF_2008_154_2_a7
ER  - 
%0 Journal Article
%A S. A. Kordyukova
%T Korteweg–de Vries hierarchy as an asymptotic limit of the Boussinesq
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 294-304
%V 154
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a7/
%G ru
%F TMF_2008_154_2_a7
S. A. Kordyukova. Korteweg–de Vries hierarchy as an asymptotic limit of the Boussinesq. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 294-304. http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a7/

[1] L. V. Ovsyannikov, “Lagranzhevy priblizheniya v teorii voln”, Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, Novosibirsk, 1985, 10–77 | MR | Zbl

[2] L. Debnath, Nonlinear Water Waves, Academic Press, Boston, MA, 1983 | MR | Zbl

[3] N. I. Makarenko, “The second long-wave approximation in the Cauchy–Poisson problem”, Dinamika sploshnoi sredy, no. 77, In-t gidrodinamiki AN SSSR, Novosibirsk, 1986, 56–72 ; W. Craig, Commun. Part. Diff. Equat., 10:8 (1985), 787–1003 ; T. Kano, T. Nishida, Osaka J. Math., 23:2 (1986), 389–413 ; Л. В. Овсянников, “К обоснованию теории мелкой воды”, Динамика сплошной среды, No 15, Ин-т гидродинамики АН СССР, Новосибирск, 1973, 104–125 | MR | Zbl | DOI | MR | Zbl | MR | Zbl | MR

[4] V. I. Karpman, E. M. Maslov, ZhETF, 73:2 (1977), 281–291 ; Е. М. Маслов, ТМФ, 42:3 (1980), 362–373 ; В. П. Маслов, Г. А. Омельянов, УМН, 36:3 (1981), 63–126 ; Сиб. матем. журн., 24:5 (1983), 172–182 ; А. Ньюэлл, “Обратное преобразование рассеяния”, Солитоны, ред. Р. Буллаф, Ф. Кодри, Мир, М., 1983, 193–269 ; Л. А. Калякин, ТМФ, 92:1 (1992), 62–76 | MR | DOI | MR | DOI | MR | Zbl | Zbl | MR | Zbl | MR | MR | Zbl | DOI | MR | Zbl

[5] V. A. Baikov, S. A. Kordyukova, Quaest. Math., 26 (2003), 1–14 ; S. A. Kordyukova, Nonlin. Dyn., 46:1–2 (2006), 73–85 | DOI | MR | Zbl | DOI | MR | Zbl

[6] S. Yu. Dobrokhotov, Dokl. AN SSSR, 292 (1987), 63–67 | MR | Zbl

[7] N. H. Ibragimov, R. L. Anderson, “Lie–Bäcklund symmetries: Representation by formal power series”, CRC Handbook of Lie Group Analysis of Differential Equation, Vol. 3. New Trends in Theoretical Developments and Computational Methods, ed. N. H. Ibragimov, CRC Press, Boca Raton, 1996, 3–29 | MR | Zbl

[8] J. Kodama, Phys. Lett. A, 112:5 (1985), 193–196 ; G. I. Burde, Nonlinearity, 18 (2005), 1443–1461 | DOI | MR | DOI | MR | Zbl

[9] A. Naife, Metody vozmuschenii, Mir, M., 1976 | MR | MR | Zbl

[10] L. A. Kalyakin, Matem. zametki, 50:5 (1991), 32–42 | DOI | MR | Zbl

[11] A. Degasperis, S. V. Manakov, P. M. Santini, Physica D, 100 (1997), 187–211 | DOI | MR | Zbl