Explicit computations of low-lying eigenfunctions for the quantum
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 283-293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a previous paper, we studied the characters and Clebsch–Gordan series for the exceptional Lie algebra $E_7$ by relating them to the quantum trigonometric Calogero–Sutherland Hamiltonian with the coupling constant $\kappa=1$. We now extend that approach to the case of an arbitrary coupling constant.
Keywords: integrable system, Calogero–Sutherland model, exceptional Lie algebra, representation theory
Mots-clés : orthogonal polynomials.
@article{TMF_2008_154_2_a6,
     author = {J. Fern\'andez-N\'u\~nez and W. Garcia Fuertes and A. M. Perelomov},
     title = {Explicit computations of low-lying eigenfunctions for the~quantum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {283--293},
     year = {2008},
     volume = {154},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a6/}
}
TY  - JOUR
AU  - J. Fernández-Núñez
AU  - W. Garcia Fuertes
AU  - A. M. Perelomov
TI  - Explicit computations of low-lying eigenfunctions for the quantum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 283
EP  - 293
VL  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a6/
LA  - ru
ID  - TMF_2008_154_2_a6
ER  - 
%0 Journal Article
%A J. Fernández-Núñez
%A W. Garcia Fuertes
%A A. M. Perelomov
%T Explicit computations of low-lying eigenfunctions for the quantum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 283-293
%V 154
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a6/
%G ru
%F TMF_2008_154_2_a6
J. Fernández-Núñez; W. Garcia Fuertes; A. M. Perelomov. Explicit computations of low-lying eigenfunctions for the quantum. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 283-293. http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a6/

[1] F. Calogero, J. Math. Phys., 12 (1971), 419–436 | DOI | MR | Zbl

[2] B. Sutherland, Phys. Rev. A, 4 (1972), 2019–2021 | DOI

[3] M. A. Olshanetsky, A. M. Perelomov, Lett. Math. Phys., 2 (1977), 7–13 | DOI | MR | Zbl

[4] M. A. Olshanetskii, A. M. Perelomov, Funkts. analiz i ego prilozh., 12:2 (1978), 57–65 | DOI | MR | Zbl | Zbl

[5] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[6] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Pure Appl. Math., 80, Academic Press, New York–San Francisco–London, 1978 ; Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Pure Appl. Math., 113, Academic Press, Orlando, 1984 | MR | Zbl | MR | Zbl

[7] A. M. Perelomov, J. Phys. A, 31 (1998), L31–L37 | DOI | MR | Zbl

[8] A. M. Perelomov, E. Ragoucy, Ph. Zaugg, J. Phys. A, 31 (1998), L559–L565 | DOI | MR | Zbl

[9] A. M. Perelomov, J. Phys. A, 32 (1999), 8563–8576 | DOI | MR | Zbl

[10] A. M. Perelomov, “Quantum integrable systems and special functions”, Lie Theory and Its Applications in Physics. III (Clausthal, Germany, 1999), World Sci. Publ., Singapore, 2000, 139–154 ; arXiv: math-ph/0111021 | MR | Zbl

[11] W. García Fuertes, M. Lorente, A. M. Perelomov, J. Phys. A, 34 (2001), 10963–10973 | DOI | MR | Zbl

[12] V. Garsiya Fuertes, A. M. Perelomov, TMF, 131:2 (2002), 194–196 ; arXiv: math-ph/0201026 | DOI | MR | Zbl

[13] J. Fernández Núñez, W. García Fuertes, A. M. Perelomov, Phys. Lett. A, 307 (2003), 233–238 | DOI | MR | Zbl

[14] J. Fernández Núñez, W. García Fuertes, A. M. Perelomov, J. Math. Phys., 44 (2003), 4957–4974 | DOI | MR | Zbl

[15] J. Fernández Núñez, W. García Fuertes, A. M. Perelomov, J. Nonlin. Math. Phys., 12:1-suppl. (2005), 280–301 | DOI | MR

[16] J. Fernández Núñez, W. García Fuertes, A. M. Perelomov, J. Math. Phys., 46 (2005), 073508 | DOI | MR | Zbl

[17] J. Fernández Núñez, W. García Fuertes, A. M. Perelomov, J. Math. Phys., 46 (2005), 103505 | DOI | MR | Zbl

[18] I. Loris, R. Sasaki, J. Phys. A, 37 (2004), 211–237 | DOI | MR | Zbl

[19] J. Fernández Núñez, W. García Fuertes, A. M. Perelomov, Explicit computations of low lying eigenfunctions for the quantum trigonometric Calogero–Sutherland model related to the exceptional algebra $E7$, arXiv: math-ph/0604062 | MR