Classification of integrable Vlasov-type equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 249-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classification of integrable Vlasov-type equations reduces to a functional equation for a generating function. We find a general solution of this functional equation in terms of hypergeometric functions.
Keywords: integrable hydrodynamic chain, hydrodynamic reduction.
@article{TMF_2008_154_2_a3,
     author = {A. V. Odesskii and M. V. Pavlov and V. V. Sokolov},
     title = {Classification of integrable {Vlasov-type} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {249--260},
     year = {2008},
     volume = {154},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a3/}
}
TY  - JOUR
AU  - A. V. Odesskii
AU  - M. V. Pavlov
AU  - V. V. Sokolov
TI  - Classification of integrable Vlasov-type equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 249
EP  - 260
VL  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a3/
LA  - ru
ID  - TMF_2008_154_2_a3
ER  - 
%0 Journal Article
%A A. V. Odesskii
%A M. V. Pavlov
%A V. V. Sokolov
%T Classification of integrable Vlasov-type equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 249-260
%V 154
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a3/
%G ru
%F TMF_2008_154_2_a3
A. V. Odesskii; M. V. Pavlov; V. V. Sokolov. Classification of integrable Vlasov-type equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 249-260. http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a3/

[1] V. E. Zakharov, Funkts. analiz i ego prilozh., 14:2 (1980), 15–24 ; V. E. Zakharov, Physica D, 3:1–2 (1981), 193–202 | DOI | MR | Zbl | Zbl | DOI | Zbl

[2] M. V. Pavlov, J. Phys. A, 39:34 (2006), 10803–10819 | DOI | MR | Zbl

[3] E. V. Ferapontov, D. G. Marshall, Math. Ann., 339:1 (2007), 61–99 | DOI | MR | Zbl

[4] M. V. Pavlov, Comm. Math. Phys., 272:2 (2007), 469–505 | DOI | MR | Zbl

[5] D. J. Benney, Stud. Appl. Math., 52 (1973), 45–50 | DOI | Zbl

[6] J. Gibbons, Physica D, 3:3 (1981), 503–511 | DOI | MR | Zbl

[7] B. A. Kupershmidt, Yu. I. Manin, Funkts. analiz i ego prilozh., 11:3 (1977), 31–42 ; 12:1 (1978), 25–37 | MR | Zbl | DOI | MR | Zbl | Zbl

[8] B. A. Kupershmidt, Proc. Roy. Irish Acad. Sect. A, 83:1 (1983), 45–74 ; “Normal and universal forms in integrable hydrodynamical systems”, Proc. Berkeley–Ames Conference on Nonlinear Problems in Control and Fluid Dynamics (Berkeley, 1983), Lie Groups: Hist., Frontiers and Appl. Ser. B: Systems Inform. Control, 2, Math Sci. Press, Brookline, MA, 1984, 357–378 | MR | Zbl | MR | Zbl

[9] M. V. Pavlov, Int. Math. Res. Not., 2006, 46987 | MR | Zbl

[10] E. V. Ferapontov, K. R. Khusnutdinova, Comm. Math. Phys., 248:1 (2004), 187–206 | DOI | MR | Zbl

[11] J. Gibbons, S. P. Tsarev, Phys. Lett. A, 211:1 (1996), 19–24 ; 258:4–6 (1999), 263–271 | DOI | MR | Zbl | DOI | MR | Zbl

[12] S. P. Tsarev, Dokl. AN SSSR, 282:3 (1985), 534–537 ; Изв. АН СССР. Сер. матем., 54:5 (1990), 1048–1068 | MR | Zbl | MR | Zbl

[13] M. V. Pavlov, TMF, 138:1 (2004), 55–70 | DOI | MR | Zbl

[14] A. V. Odesskii, V. V. Sokolov, “O $(2+1)$-mernykh sistemakh gidrodinamicheskogo tipa, obladayuschikh psevdopotentsialom s podvizhnymi osobennostyami”, Funkts. analiz i ego prilozh., 42:3 (2008) (to appear) | Zbl

[15] A. V. Odesskii, “A family of $(2+1)$-dimensional hydrodynamic type systems possessing pseudopotential”, Selecta. Math. (to appear) | MR

[16] I. M. Krichever, Comm. Pure Appl. Math., 47:4 (1994), 437–475 | DOI | MR | Zbl

[17] B. A. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[18] A. V. Zabrodin, TMF, 129:2 \year 2001, 239–258 | DOI | MR