Finiteness of the~discrete spectrum of the~Schr\"odinger operator of
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 363-371

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of three quantum particles interacting by pairwise short-range attraction potentials on a three-dimensional lattice (one of the particles has an infinite mass). We prove that the number of bound states of the corresponding Schrödinger operator is finite in the case where the potentials satisfy certain conditions, the two two-particle sub-Hamiltonians with infinite mass have a resonance at zero, and zero is a regular point for the two-particle sub-Hamiltonian with finite mass.
Keywords: resonance, two-particle sub-Hamiltonian, discrete spectrum, variation principle.
@article{TMF_2008_154_2_a12,
     author = {M. I. Muminov},
     title = {Finiteness of the~discrete spectrum of {the~Schr\"odinger} operator of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {363--371},
     publisher = {mathdoc},
     volume = {154},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a12/}
}
TY  - JOUR
AU  - M. I. Muminov
TI  - Finiteness of the~discrete spectrum of the~Schr\"odinger operator of
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 363
EP  - 371
VL  - 154
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a12/
LA  - ru
ID  - TMF_2008_154_2_a12
ER  - 
%0 Journal Article
%A M. I. Muminov
%T Finiteness of the~discrete spectrum of the~Schr\"odinger operator of
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 363-371
%V 154
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a12/
%G ru
%F TMF_2008_154_2_a12
M. I. Muminov. Finiteness of the~discrete spectrum of the~Schr\"odinger operator of. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 363-371. http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a12/