Finiteness of the~discrete spectrum of the~Schr\"odinger operator of
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 363-371
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a system of three quantum particles interacting by pairwise
short-range attraction potentials on a three-dimensional lattice (one of
the particles has an infinite mass). We prove that the number of bound
states of the corresponding Schrödinger operator is finite in the case
where the potentials satisfy certain conditions, the two two-particle
sub-Hamiltonians with infinite mass have a resonance at zero, and zero is 
a regular point for the two-particle sub-Hamiltonian with finite mass.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
resonance, two-particle sub-Hamiltonian, discrete spectrum, variation principle.
                    
                  
                
                
                @article{TMF_2008_154_2_a12,
     author = {M. I. Muminov},
     title = {Finiteness of the~discrete spectrum of {the~Schr\"odinger} operator of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {363--371},
     publisher = {mathdoc},
     volume = {154},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a12/}
}
                      
                      
                    M. I. Muminov. Finiteness of the~discrete spectrum of the~Schr\"odinger operator of. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 363-371. http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a12/
