Two-loop calculations of the matrix $\sigma$-model effective action in
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 354-362 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the matrix $\sigma$-model in the background field formalism. In the two-loop approximation, we demonstrate the equality of “running coupling constants” in the momentum cutoff regularization and in the dimensional regularization by direct calculation. We verify that the $\beta$-function coincides with the previously obtained data.
Keywords: background field, principal chiral field, renormalization, running coupling constant.
@article{TMF_2008_154_2_a11,
     author = {A. A. Bagaev},
     title = {Two-loop calculations of the~matrix $\sigma$-model effective action in},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--362},
     year = {2008},
     volume = {154},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a11/}
}
TY  - JOUR
AU  - A. A. Bagaev
TI  - Two-loop calculations of the matrix $\sigma$-model effective action in
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 354
EP  - 362
VL  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a11/
LA  - ru
ID  - TMF_2008_154_2_a11
ER  - 
%0 Journal Article
%A A. A. Bagaev
%T Two-loop calculations of the matrix $\sigma$-model effective action in
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 354-362
%V 154
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a11/
%G ru
%F TMF_2008_154_2_a11
A. A. Bagaev. Two-loop calculations of the matrix $\sigma$-model effective action in. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 354-362. http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a11/

[1] A. M. Polyakov, Phys. Lett. B, 72 (1977), 224 | DOI | MR

[2] A. Polyakov, P. B. Wiegmann, Phys. Lett. B, 131 (1983), 121 | DOI | MR

[3] L. D. Faddeev, TMF, 148:1 (2006), 133 | DOI | MR | Zbl

[4] I. Jack, H. Osborn, Nucl. Phys. B, 207 (1982), 474 | DOI

[5] A. M. Polyakov, Kalibrovochnye polya i struny, Udmurtskii un-t, Izhevsk, 1999 | MR | Zbl

[6] A. A. Slavnov, Phys. Lett. B, 518 (2001), 195 | DOI | Zbl

[7] A. A. Slavnov, TMF, 130:1 (2002), 3 | DOI | Zbl

[8] D. Friedan, Ann. Phys., 163 (1985), 318 | DOI | MR | Zbl

[9] A. M. Tsvelik, Kvantovaya teoriya polya v fizike kondensirovannogo sostoyaniya, Fizmatlit, M., 2002 | MR | Zbl

[10] E. Brézen, J. Zinn-Justin, Phys. Rev. B, 14 (1976), 3110 | DOI

[11] S. Hikami, E. Brezen, J. Phys. A, 11 (1978), 1141 | DOI

[12] P. B. Wiegmann, Phys. Lett. B, 141 (1984), 217 | DOI | MR

[13] L. D. Faddeev, N. Yu. Reshetikhin, Ann. Phys., 167 (1986), 227 | DOI | MR

[14] L. Faddeev, Bull. Braz. Math. Soc. (N.S.), 33:2, 201 | DOI | MR | Zbl

[15] B. S. Devitt, Dinamicheskaya teoriya grupp i polei, Nauka, M., 1987 | MR | MR | Zbl

[16] V. A. Fock, Phys. Z. Sowjetunion, 12 (1937), 404 | Zbl

[17] J. Schwinger, Phys. Rev., 82 (1951), 664 | DOI | MR | Zbl

[18] M. M. Postnikov, Gruppy i algebry Li, Lektsii po geometrii. Semestr 5, Nauka, M., 1982 | MR | MR | Zbl