@article{TMF_2008_154_2_a1,
author = {A. V. Domrin},
title = {Noncommutative unitons},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {220--239},
year = {2008},
volume = {154},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a1/}
}
A. V. Domrin. Noncommutative unitons. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 2, pp. 220-239. http://geodesic.mathdoc.fr/item/TMF_2008_154_2_a1/
[1] W. J. Zakrzewski, Low Dimensional Sigma Models, Adam Hilger, Bristol, 1989 | MR | Zbl
[2] I. Davidov, A. G. Sergeev, UMN, 48:3 (1993), 3–96 | DOI | MR | Zbl
[3] M. A. Guest, “An update on harmonic maps of finite uniton number, via the zero curvature equation”, Integrable Systems, Topology, and Physics. A Conference on Integrable Systems in Differential Geometry (Tokyo, Japan, 2000), Contemp. Math., 309, eds. M. Guest et al., AMS, Providence, RI, 2002, 85–113 | DOI | MR | Zbl
[4] K. Uhlenbeck, J. Differential Geom., 30:1 (1989), 1–50 | DOI | MR | Zbl
[5] G. Valli, Topology, 27:2 (1988), 129–136 | DOI | MR | Zbl
[6] J. A. Harvey, Komaba lectures on noncommutative solitons and $D$-branes, arXiv: hep-th/0102076
[7] J. M. Gracia-Bondia, J. C. Várilly, H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser Adv. Texts Basler Lehrbucher, Birkhäuser, Boston, 2001 | MR | Zbl
[8] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. III. Psevdodifferentsialnye operatory, Mir, M., 1987 | MR | MR | Zbl
[9] O. Lechtenfeld, A. D. Popov, JHEP, 11 (2001), 040 | DOI | MR
[10] A. V. Domrin, O. Lechtenfeld, S. Petersen, JHEP, 03 (2005), 045 | DOI | MR
[11] A. V. Domrin, “Prostranstva modulei reshenii nekommutativnoi sigma-modeli”, TMF, 2008 (to appear)
[12] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | MR | Zbl | Zbl
[13] R. Rochberg, N. Weaver, Proc. Amer. Math. Soc., 129:9 (2001), 2679–2687 | DOI | MR | Zbl
[14] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR | MR | Zbl | Zbl