Microscopic theory of superconductivity in $\text{MgB}_2$-type systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 1, pp. 113-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate the upper critical magnetic field $H_{\mathrm{c} 2}$ in the framework of a microscopic superconductivity theory with two energy bands of different dimensions on the Fermi surface with the cavity topology typical of the compound $\mathrm{MgB}_2$ taken into account (an anisotropic system). We assume an external magnetic field parallel to the crystallographic $z$ axis. We obtain analytic formulas in the low-temperature range $(T/T_{\mathrm{c}}\ll1)$ and also near the critical temperature $\bigl((T-T_{\mathrm{c}})/T_{\mathrm{c}}\ll1\bigr)$. We compare the temperature dependence of $H_{\mathrm{c} 2}$ for a two-band anisotropic system with that of $H_{\mathrm{c} 2}^0$ corresponding to a two-band isotropic system (with Fermi-surface cavities of the same topology). We determine the role of the band-structure anisotropy, the positive curvature of the upper critical field near the critical temperature, and the important role of the ratio $v_1/v_2$ of the velocities on the Fermi surface in determining $H_{\mathrm{c} 2}$. We also obtain the values of the parameters $\Delta_1$ and $\Delta_2$ along the line of the critical magnetic field.
Keywords: two-band superconductivity, upper critical field, anisotropy.
@article{TMF_2008_154_1_a7,
     author = {V. A. Moskalenko and M. E. Palistrant and V. A. Ursu},
     title = {Microscopic theory of superconductivity in $\text{MgB}_2$-type systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {113--128},
     year = {2008},
     volume = {154},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a7/}
}
TY  - JOUR
AU  - V. A. Moskalenko
AU  - M. E. Palistrant
AU  - V. A. Ursu
TI  - Microscopic theory of superconductivity in $\text{MgB}_2$-type systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 113
EP  - 128
VL  - 154
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a7/
LA  - ru
ID  - TMF_2008_154_1_a7
ER  - 
%0 Journal Article
%A V. A. Moskalenko
%A M. E. Palistrant
%A V. A. Ursu
%T Microscopic theory of superconductivity in $\text{MgB}_2$-type systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 113-128
%V 154
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a7/
%G ru
%F TMF_2008_154_1_a7
V. A. Moskalenko; M. E. Palistrant; V. A. Ursu. Microscopic theory of superconductivity in $\text{MgB}_2$-type systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 1, pp. 113-128. http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a7/

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka et al., Nature, 410 (2001), 63 | DOI

[2] P. C. Confield, S. L. Bud'ko, D. K. Finemore, Physica C, 385 (2003), 1 | DOI

[3] F. Bouqet, I. Wang, I. Sheikin et al., Physica C, 385 (2003), 192 | DOI

[4] H. J. Choi, D. Roundy, H. Sun et al., Phys. Rev. B, 66 (2002), 020513 | DOI

[5] A. J. Liu, I. I. Mazin, J. Kartus, Phys. Rev. Lett., 87 (2001), 087005 | DOI | MR

[6] V. A. Moskalenko, FMM, 8 (1959), 503

[7] H. Suhl, B. T. Matthias, L. R. Walker, Phys. Rev. Lett., 3 (1959), 552 | DOI | Zbl

[8] J. M. An, W. E. Pickett, Phys. Rev. Lett., 86 (2001), 4366 | DOI

[9] M. E. Palistrant, Moldav. J. Phys. Sci., 3 (2004), 133; arXiv: cond-mat/0305496

[10] L. Z. Kon, Some kinetic properties of the two-band superconductors, arXiv: cond-mat/0309707

[11] V. A. Moskalenko, M. E. Palistrant, V. M. Vakalyuk, UFN, 161:8 (1991), 155 ; arXiv: cond-mat/0309671 | DOI

[12] M. E. Palistrant, F. G. Kochorbe, Physica C, 194 (1992), 351 | DOI

[13] M. E. Palistrant, F. G. Kochorbe, FNT, 26:11 (2000), 1077

[14] M. E. Palistrant, V. A. Ursu, ZhETF, 131:1 (2007), 59

[15] M. Angst, R. Puzniak, “Two band superconductivity in MgB2: basic anisotropic properties and phase diagram”, Chapter 1, Focus on Superconductivity, ed. B. P. Martins, Nova Sci. Publ., Hauppauge, NY, 2004, 1; arXiv: cond-mat/0305048

[16] T. Dahm, N. Schopohl, Phys. Rev. Lett., 91 (2003), 017001 | DOI | MR

[17] P. Miranovic, K. Machida, V. G. Kogan, J. Phys. Soc. Japan, 72 (2003), 221 | DOI | Zbl

[18] L. P. Gorkov, ZhETF, 37 (1959), 833 | MR

[19] K. Maki, T. Tsuzuki, Phys. Rev., 139 (1965), A868 | DOI | MR

[20] V. A. Moskalenko, ZhETF, 51 (1966), 1163

[21] M. E. Palistrant, V. I. Dedyu, Issledovaniya po kvantovoi teorii sistem mnogikh chastits, RIO AN MSSR, Kishinev, 1969

[22] M. E. Palistrant, V. A. Ursu, A. V. Palistrant, Moldav. J. Phys. Sci., 4:1 (2005), 40

[23] Y. Kong, O. V. Dolgov, O. Jepsen, O. K. Anderson, Phys. Rev. B, 64 (2001), 020501 | DOI

[24] V. H. Dao, M. E. Zhitomirsky, Eur. Phys. J. B, 44 (2005), 183 ; arXiv: cond-mat/0504053 | DOI