Master equation of the reduced statistical operator of an atom in a plasma
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 1, pp. 31-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the nonequilibrium Liouville equation to derive the master equation for the reduced statistical operator in a heat bath represented by a many-particle environment. Focusing on the case of a weak system–bath coupling, we consider the Born–Markov approximation of the master equation and compare the result to different approaches. The master equation is elaborated for the special case of an atom as a reduced system in a plasma background. We find that the dynamical structure factor determines the effect of the plasma on the reduced system. We consider the operator equation in the atomic eigenstate and in the phase-space representation, which yields two limiting cases: quantum mechanical behavior similar to the isolated atom for the lower strongly bound levels and a semiclassical one for highly excited Rydberg levels.
Keywords: nonequilibrium statistical operator, reduced statistical operator, quantum master equation, quantum Brownian motion, open quantum system, decoherence, Rydberg atom, ultracold plasma.
@article{TMF_2008_154_1_a2,
     author = {C. Gocke and G. R\"opke},
     title = {Master equation of the~reduced statistical operator of an~atom in a~plasma},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {31--62},
     year = {2008},
     volume = {154},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a2/}
}
TY  - JOUR
AU  - C. Gocke
AU  - G. Röpke
TI  - Master equation of the reduced statistical operator of an atom in a plasma
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 31
EP  - 62
VL  - 154
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a2/
LA  - ru
ID  - TMF_2008_154_1_a2
ER  - 
%0 Journal Article
%A C. Gocke
%A G. Röpke
%T Master equation of the reduced statistical operator of an atom in a plasma
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 31-62
%V 154
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a2/
%G ru
%F TMF_2008_154_1_a2
C. Gocke; G. Röpke. Master equation of the reduced statistical operator of an atom in a plasma. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 1, pp. 31-62. http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a2/

[1] E. Joos, H. D. Zeh, C. Kiefer et al., Decoherence and the Appearance of a Classical World in Quantum Theory, Springer, Berlin, 2003 | MR | Zbl

[2] G. Auletta, Foundations and Interpretation of Quantum Mechanics, World Scientific, Singapore, 2000 | MR | Zbl

[3] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 | MR

[4] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, T. 1, Fizmatlit, M., 2002 | MR | Zbl

[5] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, T. 2, Fizmatlit, M., 2002 | MR | Zbl

[6] K. Hornberger, J. E. Sipe, Phys. Rev. A, 68 (2003), 012105 | DOI

[7] L. Hackermüller, K. Hornberger, B. Brezger et al., Nature, 427 (2004), 711–714 | DOI

[8] L. Hackermüller, S. Uttenthaler, K. Hornberger et al., Phys. Rev. Lett., 91 (2003), 090408 | DOI

[9] B. Brezger, L. Hackermüller, S. Uttenthaler et al., Phys. Rev. Lett., 88 (2002.), 100404 | DOI

[10] Y. Imry, Introduction to Mesoscopic Physics, Oxford Univ. Press, Oxford, 2002

[11] B. Krummheuer, V. M. Axt, T. Kuhn, Phys. Rev. B, 65 (2002), 195313 | DOI

[12] R. Omnès, The Interpretation of Quantum Mechanics, Princeton Ser. Phys., Princeton Univ. Press, Princeton, 1994 | MR | Zbl

[13] R. Omnès, Understanding Quantum Mechanics, Princeton Univ. Press, Princeton, 1999 | MR | Zbl

[14] W. H. Zurek, S. Habib, J. P. Paz, Phys. Rev. Lett., 70 (1993), 1187–1190 | DOI

[15] F. Petruccione, B. Vacchini, Phys. Rev. E, 71 (2005), 046134 | DOI

[16] A. O. Caldeira, A. J. Leggett, Phys. A, 121 (1983), 587–616 | DOI | MR | Zbl

[17] L. Diósi, Europhys. Lett., 30 (1995), 63–68 | DOI | Zbl

[18] W. Ebeling, A. Filinov, M. Bonitz et al., J. Phys. A, 39 (2006), 4309–4317 | DOI | MR | Zbl

[19] C. Gocke, G. Röpke, Contrib. Plasma Phys., 47 (2007), 291–296 | DOI

[20] T. F. Gallagher, Rydberg Atoms, Cambridge Univ. Press, Cambridge, 1994

[21] I. L. Beigman, V. S. Lebedev, Physics of Highly Excited Atoms and Ions, Springer, Berlin, 1998

[22] T. C. Killian, M. J. Lim, S. Kulin et al., Phys. Rev. Lett., 86 (2001), 3759–3762 | DOI

[23] T. C. Killian, Science, 316 (2007), 705–708 | DOI

[24] T. C. Killian, T. Pattard, T. Pohl, J. M. Rost, Phys. Rep., 449 (2007), 77–130 | DOI

[25] M. Fleischhauer, S. F. Yelin, Phys. Rev. A, 59 (1999), 2427 | DOI

[26] L. C. Johnson, Astrophys. J., 174 (1972), 227–236 | DOI

[27] M. D. Lukin, M. Fleischhauer, R. Cote et al., Phys. Rev. Lett., 87 (2001), 037901 | DOI | MR

[28] P. Mansbach, J. Keck, Phys. Rev., 181 (1969), 275–289 | DOI

[29] L. Vriens, A. H. M. Smeets, Phys. Rev. A, 22 (1980), 940–951 | DOI

[30] C. Gocke, G. Röpke, “Dephasing in Rydberg plasmas”, Condensed Matter Theories, 21, eds. H. Akai, A. Hosaka, H. Toki, F. B. Malik, Huntington, NY, Nova Sci. Publ., 2007

[31] C. Gocke, G. Röpke, J. Phys. A, 39 (2006), 4587–4594 | DOI

[32] I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, J. Phys. B, 38 (2005), S421–S436 | DOI

[33] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946 | MR

[34] S. Nakajima, Prog. Theor. Phys., 20 (1958), 948–959 | DOI | MR | Zbl

[35] R. Zwanzig, J. Chem. Phys., 33 (1960), 1338–1341 | DOI | MR

[36] R. Zwanzig, “Statistical mechanics of irreversibility”, Lectures in Theoretical Physics, Vol. 3, eds. W. E. Brittin, B. W. Downs, J. Downs, Interscience, New York, 1961, 106–141 | MR

[37] R. Zwanzig, Physica, 30 (1964), 1109–1123 | DOI | MR

[38] J. Kupsch, “Open quantum systems”, Decoherence and the Appearance of a Classical World in Quantum Theory, eds. E. Joos, H. D. Zeh, C. Kiefer et al., Springer, Berlin, 2003, 317–356 | DOI | MR | Zbl

[39] G. D. Mahan, Many-Particle Physics. Physics of Solids and Liquids, Plenum Press, New York, 1990 | MR

[40] S. F. Yelin, M. Kostrun, T. Wang, M. Fleischhauer, Correlation in superradiance: A closed-form approach to cooperative effects, arXiv: quant-ph/0509184

[41] H. M. Cataldo, M. A. Despósito, E. S. Hernández, D. M. Jezek, Phys. Rev. B, 55 (1997), 3792–3797 | DOI

[42] J. P. Paz, W. H. Zurek, Phys. Rev. Lett., 82 (1999), 5181–5185 | DOI | MR

[43] G. Lindblad, Commun. Math. Phys., 48 (1976), 119–130 | DOI | MR | Zbl

[44] V.-D. Kreft, D. Kremp, V. Ebeling, G. Repke, Kvantovaya statistika sistem zaryazhennykh chastits, Mir, M., 1988

[45] G. Röpke, Phys. Rev. E, 57 (1998), 4673–4683 | DOI

[46] G. Röpke, A. Wierling, Phys. Rev. E, 57 (1998), 7075–7085 | DOI | MR

[47] H. Reinholz, R. Redmer, G. Röpke, A. Wierling, Phys. Rev. E, 62 (2000), 5648–5666 | DOI

[48] A. Selchow, G. Röpke, A. Wierling et al., Phys. Rev., 64 (2001), 056410 | DOI

[49] B. Vacchini, Phys. Rev. E, 63 (2001), 066115 | DOI | MR

[50] E. Merzbacher, Quantum Mechanics, Wiley, New York, 1998 | MR | Zbl

[51] J. P. Coleman, “The impulse approximation and related methods in the theory of atomic collisions”, Case Studies in Atomic Collision Physics, Vol. 1, eds. E. W. McDaniel, M. R. C. McDowel, North-Holland, Amsterdam, 1969, 99–167

[52] K. Hornberger, J. E. Sipe, M. Arndt, Phys. Rev. A, 70 (2004), 053608 | DOI

[53] A. S. Holevo, “Covariant quantum dynamical semigroups: unbounded generators”, Irreversibility and Causality. Semigroups and Rigged Hilbert Spaces (Goslar, Germany, 1996), Lecture Notes in Phys., 504, eds. P. Kielanovski, A. Bohm, H.-D. Doebner, Springer, Berlin, 1998, 67–81 | DOI | MR | Zbl

[54] S. Chaturvedi, F. Shibata, Z. Phys. B, 35 (1979), 297–308 | DOI | MR