A quantum generalization of equilibrium statistical thermodynamics:
Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 1, pp. 183-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a generalization of statistical thermodynamics in which quantum effects are taken into account on the macrolevel without explicitly using the operator formalism while traditional relations between the macroparameters are preserved. In a generalized thermostat model, thermal equilibrium is characterized by an effective temperature bounded from below. We introduce fundamental theoretical macroparameters: the effective entropy and the effective action. Because the effective entropy is nonzero at low temperatures, we can write the third law of thermodynamics in the form postulated by Nernst. The effective action at any temperature coincides with the product of standard deviations of the coordinate and momentum in the Heisenberg uncertainty relation and is therefore bounded from below. We establish that the ratio of the effective action to the effective entropy in the low-temperature limit is determined by a holistic stochastic-action constant depending on the Planck and Boltzmann constants. We show that the same results can be obtained in the framework of a modified version of thermofield dynamics in which the quantum oscillator is described by a temperature-dependent complex macroscopic wave function. We study the discrepancy between the behavior of the action-to-entropy ratio in the low-temperature limit in our proposed theory and that in quantum equilibrium statistical mechanics, which can be verified experimentally.
Keywords: quantum thermostat, effective temperature, effective entropy, effective action
Mots-clés : stochastic-action constant.
@article{TMF_2008_154_1_a11,
     author = {A. D. Sukhanov},
     title = {A~quantum generalization of equilibrium statistical thermodynamics:},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {183--196},
     year = {2008},
     volume = {154},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a11/}
}
TY  - JOUR
AU  - A. D. Sukhanov
TI  - A quantum generalization of equilibrium statistical thermodynamics:
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 183
EP  - 196
VL  - 154
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a11/
LA  - ru
ID  - TMF_2008_154_1_a11
ER  - 
%0 Journal Article
%A A. D. Sukhanov
%T A quantum generalization of equilibrium statistical thermodynamics:
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 183-196
%V 154
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a11/
%G ru
%F TMF_2008_154_1_a11
A. D. Sukhanov. A quantum generalization of equilibrium statistical thermodynamics:. Teoretičeskaâ i matematičeskaâ fizika, Tome 154 (2008) no. 1, pp. 183-196. http://geodesic.mathdoc.fr/item/TMF_2008_154_1_a11/

[1] Dzh. Gibbs, Osnovnye printsipy statisticheskoi mekhaniki, izlagaemye so spetsialnym primeneniem k ratsionalnomu obosnovaniyu termodinamiki, Nauka, M., 1982, gl. IX | MR | Zbl

[2] A. Einstein, Ann. Phys., 14 (1904), 351 ; A. Einshtein, “K obschei molekulyarnoi teorii teploty”, Sobranie nauchnykh trudov. T. 3. Raboty po kineticheskoi teorii, teorii izlucheniya i osnovam kvantovoi mekhaniki (1901–1955), Nauka, M., 1966, 67 | MR

[3] A. Einstein, Conseil de Physique, Inst. Solvay, 1911 Rapports, Gauthier-Villars, Paris, 1912, 407; A. Einshtein, “K sovremennomu sostoyaniyu problemy udelnoi teploemkosti”, Sobranie nauchnykh trudov. T. 3. Raboty po kineticheskoi teorii, teorii izlucheniya i osnovam kvantovoi mekhaniki (1901–1955), Nauka, M., 1966, 277

[4] A. D. Sukhanov, EChAYa, 36:6 (2005), 1281

[5] A. D. Sukhanov and Yu. G. Rudoi, Phys. Usp., 49:5 (2006), 531–535 | DOI | DOI

[6] L. Gunther, J. Low Temper. Phys., 77:1–2 (1989), 151 | DOI

[7] J. Wu, A. Widom, Phys. Rev. E, 57:5 (1998), 5178 | DOI | MR

[8] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Fizmatlit, M., 1971 | MR | Zbl

[9] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Ch. 1, Fizmatlit, M., 2001 | MR | MR | Zbl | Zbl

[10] N. N. Bogolyubov, Lektsii po kvantovoi statistike, Radyanska shkola, Kiev, 1949; Собрание научных трудов. Т. 6. Равновесная статистическая механика, 1945–1986, Наука, М., 2006

[11] R. Feinman, Statisticheskaya mekhanika. Kurs lektsii, Mir, M., 1978 | MR | Zbl

[12] D. N. Zubarev, M. V. Tokarchuk, TMF, 88:2 (1991), 286 | DOI | MR

[13] A. D. Sukhanov, “On the global interrelation between quantum dynamics and thermodynamics”, Proc. XI Int. Conf. “Problems of Quantum Field Theory” (Dubna, 1998), JINR, Dubna, 1999, 232

[14] A. Einstein, Ver. Deutsch. Phys. Ges., 16 (1914), 820 ; A. Einshtein, “K kvantovoi teorii”, Sobranie nauchnykh trudov. T. 3. Raboty po kineticheskoi teorii, teorii izlucheniya i osnovam kvantovoi mekhaniki (1901–1955), Nauka, M., 1966, 328 | MR

[15] F. Bloch, Z. Phys. A, 74 (1932), 295 | DOI

[16] E. Wigner, Phys. Rev., 40 (1932), 749 | DOI

[17] D. Han, Y. Kim, M. Noz, Coupled harmonic oscillators and Feynman's rest of the Universe, arXiv: cond-mat/9705029

[18] Yu. L. Klimontovich, Statisticheskaya teoriya otkrytykh sistem. T. 3. Fizika kvantovykh otkrytykh sistem, Yanus, M., 2001

[19] Yu. G. Rudoy, A. D. Sukhanov, Cond. Mat. Phys., 8:3(43) (2005), 507

[20] L. Boltzmann, Vorlesungen uber die Prinzipien der Mechanik. Bd. II. Teil enthaltend: Die Wirkungsprinzipe, die Lagrangeschen Gleichungen und deren Anwendungen, J. A. Barth, Leipzig, 1904 ; L. Boltsman, “Otryvok iz "Lektsii o printsipakh mekhaniki”, Variatsionnye printsipy mekhaniki, Fizmatlit, M., 1959, 468 | Zbl | MR

[21] S. A. Boguslavskii, “Osnovy molekulyarnoi fiziki i primenenie statistiki k vychisleniyu termodinamicheskikh potentsialov. Glava III. Printsip naimenshego deistviya v termodinamike”, Nauchnye izvestiya, sb. 3, Fizika, Trudy Moskovskogo fizicheskogo obschestva im. P. N. Lebedeva, 1922, 17; Избранные труды по физике, Физматгиз, М., 1961, 162 | Zbl

[22] L. de Broglie, La thermodynamique de la particule isolée, Gauthier-Villars, Paris, 1964 | MR

[23] Kh. Umedzava, Kh. Matsumoto, M. Tatiki, Termopolevaya dinamika i kondensirovannye sostoyaniya, Mir, M., 1985

[24] H. Umezawa, Advanced Field Theory: Micro, Macro and Thermal Physics, AIP, New York, 1993

[25] A. D. Sukhanov, EChAYa, 36:7A (2005), 138

[26] A. D. Sukhanov, TMF, 148:2 (2006), 295 | DOI | MR | Zbl

[27] V. V. Dodonov, J. Opt. B, 4 (2002), S98 | DOI | MR

[28] V. V. Dodonov, V. I. Manko, Tr. FIAN, 183 (1987), 5 | MR

[29] E. L. Andronikashvili, ZhETF, 18:5 (1948), 424

[30] E. A. Pashitskii, S. M. Ryabchenko, FNT, 33:1 (2007), 12

[31] D. Son, A. Starinets, Ann. Rev. Nucl. Part. Sci., 57 (2007), 95 ; arXiv: hep-th/0704.0240 | DOI