Dimensional reduction of gravity and relation between static states,
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 422-452
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce generalized dimensional reductions of an integrable $(1+1)$-dimensional dilaton gravity coupled to matter down to one-dimensional static states (black holes in particular), cosmological models, and waves. An unusual feature of these reductions is that the wave solutions depend on two variables: space and time. They are obtained here both by reducing the moduli space (available because of complete integrability) and by a generalized separation of variables (also applicable to nonintegrable models and to higher-dimensional theories). Among these new wavelike solutions, we find a class of solutions for which the matter fields are finite everywhere in space–time, including infinity. These considerations clearly demonstrate that a deep connection exists between static states, cosmologies, and waves. We argue that it should also exist in realistic higher-dimensional theories. Among other things, we also briefly outline the relations existing between the low-dimensional models that we discuss here and the realistic higher-dimensional ones.
Keywords: dilaton gravity, dimensional reduction, cosmology, integrable model, separation of variables, gravity wave, supergravity.
@article{TMF_2007_153_3_a7,
     author = {V. De Alfaro and A. T. Filippov},
     title = {Dimensional reduction of gravity and relation between static states,},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {422--452},
     year = {2007},
     volume = {153},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a7/}
}
TY  - JOUR
AU  - V. De Alfaro
AU  - A. T. Filippov
TI  - Dimensional reduction of gravity and relation between static states,
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 422
EP  - 452
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a7/
LA  - ru
ID  - TMF_2007_153_3_a7
ER  - 
%0 Journal Article
%A V. De Alfaro
%A A. T. Filippov
%T Dimensional reduction of gravity and relation between static states,
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 422-452
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a7/
%G ru
%F TMF_2007_153_3_a7
V. De Alfaro; A. T. Filippov. Dimensional reduction of gravity and relation between static states,. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 422-452. http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a7/

[1] T. Padmanabhan, AIP Conf. Proc., 861 (2006), 179 ; astro-ph/0603114 | DOI

[2] E. J. Copeland, M. Sami, S. Tsujikawa, Internat. J. Modern Phys. D, 15 (2006), 1753 ; hep-th/0603057 | DOI | MR | Zbl

[3] S. Nojiri, S. Odintsov, Int. J. Geom. Methods Mod. Phys., 4 (2007), 115 ; hep-th/0601213 | DOI | MR | Zbl

[4] V. Sahni, A. Starobinsky, Internat. J. Modern Phys. D, 15 (2006), 2105 ; astro-ph/0610026 | DOI | MR | Zbl

[5] J. E. Lidsey, D. Wands, E. J. Copeland, Phys. Rep., 337 (2000), 343 | DOI | MR

[6] M. Gasperini, G. Veneziano, Phys. Rep., 373 (2003), 1 | DOI | MR

[7] H. Stefani, D. Kramer, M. MacCallum et al., Exact Solutions of the Einstein's Field Equations, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[8] V. A. Belinskii, V. E. Zakharov, ZhETF, 75:6 (1978), 1955 | MR

[9] D. Maison, Phys. Rev. Lett., 41 (1978), 521 | DOI | MR

[10] H. Nicolai, D. Korotkin, H. Samtleben, “Integrable classical and quantum gravity”, Quantum Fields and Quantum Space Time (Cargèse, Corsica, France, 1996), NATO Adv. Sci. Inst. Ser. B. Phys., 364, Plenum, New York, 1997, 203 ; hep-th/9612065 | MR | Zbl

[11] G. A. Alekseev, TMF, 143:2 (2005), 278 | DOI | MR | Zbl

[12] C. Callan, S. Giddings, J. Harvey, A. Strominger, Phys. Rev. D (3), 45 (1992), R1005 | DOI | MR

[13] V. de Alfaro, A. T. Filippov, Integrable low dimensional theories describing higher dimensional branes, black holes, and cosmologies, hep-th/0307269 | MR

[14] V. de Alfaro, A. T. Filippov, Integrable low dimensional models for black holes and cosmologies from high dimensional theories, hep-th/0504101 | MR

[15] V. de Alfaro, A. T. Filippov, Black holes and cosmological solutions in various dimensions, unpublished

[16] A. T. Filippov, TMF, 146:1 (2006), 115 ; hep-th/0505060 | DOI | MR | Zbl

[17] A. T. Filippov, Some unusual dimensional reductions of gravity: geometric potentials, separation of variables, and static–cosmological duality, hep-th/0605276

[18] V. de Alfaro, A. T. Filippov, Dynamical dimensional reduction, unpublished

[19] A. T. Filippov, Modern Phys. Lett. A, 11 (1996), 1691 ; Internat. J. Modern Phys. A, 12 (1997), 13 | DOI | MR | Zbl | DOI | MR | Zbl

[20] J. R. Oppenheimer, H. Snyder, Phys. Rev. D, 55 (1939), 374 | DOI | Zbl

[21] M. Cavaglià, V. de Alfaro, A. T. Filippov, Internat. J. Modern Phys. D, 4 (1995), 661 ; 5 (1996), 227 ; 6 (1997), 39 | DOI | MR | DOI | MR | DOI | Zbl

[22] A. Lukas, B. A. Ovrut, D. Waldram, Phys. Lett. B, 393 (1997), 65 | DOI | MR

[23] F. Larsen, F. Wilczek, Phys. Rev. D, 55 (1997), 4591 | DOI | MR

[24] H. Lü, S. Mukherji, C. N. Pope, Internat. J. Modern Phys. A, 14 (1999), 4121 | DOI | MR | Zbl

[25] Y. Kiem, C. Y. Lee, D. Park, Phys. Rev. D (3), 57 (1998), 2381 | DOI | MR

[26] G. D. Dzhordzhadze, A. K. Pogrebkov, M. C. Polivanov, On the solutions with singularities of the Liouville equation, Preprint IC/78/126, ICTP, Trieste, 1978

[27] J. L. Gervais, Internat. J. Modern Phys. A, 6 (1991), 2805 | DOI | MR

[28] A. N. Leznov, M. V. Savelev, Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | MR | Zbl | Zbl

[29] L. Castellani, A. Ceresole, R. D'Auria, S. Ferrara, P. Fré, M. Trigiante, Nucl. Phys. B, 527 (1998), 142 | DOI | MR | Zbl

[30] P. Fré, A. Sorin, Nucl. Phys. B, 733 (2006), 334 | DOI | MR | Zbl

[31] K. Stelle, “BPS branes in supergravity”, Quantum Field Theory: Perspective and Prospective (Les Houches, France, 1998), NATO Sci. Ser. C. Math. Phys. Sci., 530, Kluwer, Dordrecht, 1999, 257 ; hep-th/9803116 | MR | Zbl

[32] T. Mohaupt, Class. Quantum Grav., 17 (2000), 3429 | DOI | MR | Zbl

[33] V. D. Ivashchuk, V. N. Melnikov, Class. Quantum Grav., 18 (2001), R87 | DOI | MR | Zbl

[34] G. P. Dzhordzhadze, A. K. Pogrebkov, M. K. Polivanov, TMF, 40:2 (1979), 221 ; G. P. Jorijadze, A. K. Pogrebkov, M. C. Polivanov, J. Phys. A, 19 (1986), 121 | DOI | MR | Zbl | DOI | MR | Zbl

[35] E. D'Hoker, R. Jackiw, Phys. Rev. D (3), 26 (1982), 3517 ; Phys. Rev. Lett., 50 (1983), 1719 | DOI | MR | DOI | MR

[36] A. Einstein, N. Rosen, J. Franklin Inst., 223 (1937), 43 | DOI | MR | Zbl

[37] P. Szekeres, J. Math. Phys, 13 (1972), 286 | DOI | MR

[38] I. Ya. Aref'eva, K. S. Viswanathan, I. V. Volovich, Nucl. Phys. B, 452 (1995), 346 | DOI | MR | Zbl

[39] A. Feinstein, K. E. Kunze, M. A. Vázquez-Mozo, Class. Quantum Grav., 17 (2000), 3599 | DOI | MR | Zbl

[40] V. Bozza, G. Veneziano, JHEP, 10 (2000), 035 | DOI | MR | Zbl