Superfluidity of classical liquid in a nanotube for even and odd
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 388-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the superfluidity phenomenon occurs for classical liquids in nanotubes.
Keywords: superfluidity
Mots-clés : boson, fermion.
@article{TMF_2007_153_3_a5,
     author = {V. P. Maslov},
     title = {Superfluidity of classical liquid in a nanotube for even and odd},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--408},
     year = {2007},
     volume = {153},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a5/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Superfluidity of classical liquid in a nanotube for even and odd
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 388
EP  - 408
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a5/
LA  - ru
ID  - TMF_2007_153_3_a5
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Superfluidity of classical liquid in a nanotube for even and odd
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 388-408
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a5/
%G ru
%F TMF_2007_153_3_a5
V. P. Maslov. Superfluidity of classical liquid in a nanotube for even and odd. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 388-408. http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a5/

[1] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | MR | Zbl | Zbl

[2] N. N. Bogolyubov, “K teorii sverkhtekuchesti”, Izbrannye trudy v trekh tomakh, t. 2, Naukova dumka, Kiev, 1970, 210–224 | MR | Zbl

[3] V. P. Maslov, Russ. J. Math. Phys., 3:3 (1995), 401–406 | MR | Zbl

[4] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka v mnogochastichnykh zadachakh i zadachakh kvantovoi teorii polya, URSS, M., 2000

[5] L. D. Landau, “K teorii sverkhtekuchesti”, Sobranie trudov, t. 2, Nauka, M., 1969, 42–46 ; L. D. Landau, Phys. Rev., 75:5 (1949), 884–885 | MR | DOI

[6] V. P. Maslov, Kvantovanie termodinamiki i ultravtorichnoe kvantovanie, In-t kompyuternykh issledovanii, M., 2001

[7] V. P. Maslov, Funkts. analiz i ego prilozh., 34:4 (2000), 35–48 | DOI | MR | Zbl

[8] V. P. Maslov, UMN, 55:6 (2000), 145–146 | DOI | MR | Zbl

[9] V. P. Maslov, Russ. J. Math. Phys., 8:3 (2001), 309–321 | MR | Zbl

[10] V. P. Maslov, Russ. J. Math. Phys., 8:1 (2001), 55–82 | MR | Zbl

[11] V. P. Maslov, TMF, 132:3 (2002), 388–398 | DOI | MR | Zbl

[12] E. M. Lifshits, L. P. Pitaevskii, Statisticheskaya fizika. Ch. 2. Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR

[13] V. P. Maslov, TMF, 143:3 (2005), 307–327 | DOI | MR | Zbl

[14] V. P. Maslov, Russ. J. Math. Phys., 12:3 (2005), 369–378 | MR | Zbl

[15] V. P. Maslov, DAN SSSR, 151:2 (1963), 306–309 | MR

[16] V. P. Maslov, TMF, 131:2 (2002), 261–277 | DOI | MR | Zbl

[17] V. P. Maslov, TMF, 125:2 (2000), 297–314 | DOI | MR

[18] V. P. Maslov, TMF, 129:3 (2001), 464–490 | DOI | MR | Zbl

[19] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | MR | Zbl | Zbl

[20] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | MR | Zbl | Zbl