Generalized oscillator and its coherent states
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 363-380
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a system (a generalized oscillator) that is similar to
the oscillator and is related to a system of orthogonal polynomials on the
real axis. We define coherent states in the Fock space associated with the
generalized oscillator. In the example of the generalized oscillator related
to the Gegenbauer polynomials, we prove the (super)completeness of
these coherent states, i.e., we construct a measure determining a partition
of unity. We present a formula that allows calculating the Mandel parameter
for the constructed coherent states.
Mots-clés :
orthogonal polynomials
Keywords: harmonic oscillator, generalized oscillator, creation operator, annihilation operator, coherent state, Mandel parameter.
Keywords: harmonic oscillator, generalized oscillator, creation operator, annihilation operator, coherent state, Mandel parameter.
@article{TMF_2007_153_3_a3,
author = {V. V. Borzov},
title = {Generalized oscillator and its coherent states},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {363--380},
publisher = {mathdoc},
volume = {153},
number = {3},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a3/}
}
V. V. Borzov. Generalized oscillator and its coherent states. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 363-380. http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a3/