Noncommutative Grassmannian $U(1)$ sigma model and a Bargmann–Fock
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 347-357 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Grassmannian version of the noncommutative $U(1)$ sigma model specified by the energy functional $E(P)=\bigl\|[a,P]\bigr\|_{\mathrm{HS}}^2$, where $P$ is an orthogonal projection operator in a Hilbert space $H$ and $a\colon H\to H$ is the standard annihilation operator. With $H$ realized as a Bargmann–Fock space, we describe all solutions with a one-dimensional range and prove that the operator $[a,P]$ is densely defined in $H$ for a certain class of projection operators $P$ with infinite-dimensional ranges and kernels.
Keywords: noncommutative $U(1)$ sigma model, Bargmann–Fock space.
@article{TMF_2007_153_3_a1,
     author = {A. V. Komlov},
     title = {Noncommutative {Grassmannian} $U(1)$ sigma model and a {Bargmann{\textendash}Fock}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {347--357},
     year = {2007},
     volume = {153},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a1/}
}
TY  - JOUR
AU  - A. V. Komlov
TI  - Noncommutative Grassmannian $U(1)$ sigma model and a Bargmann–Fock
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 347
EP  - 357
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a1/
LA  - ru
ID  - TMF_2007_153_3_a1
ER  - 
%0 Journal Article
%A A. V. Komlov
%T Noncommutative Grassmannian $U(1)$ sigma model and a Bargmann–Fock
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 347-357
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a1/
%G ru
%F TMF_2007_153_3_a1
A. V. Komlov. Noncommutative Grassmannian $U(1)$ sigma model and a Bargmann–Fock. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 347-357. http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a1/

[1] W. J. Zakrzewski, Low Dimensional Sigma Models, Adam Hilger, Bristol, 1989 | MR | Zbl

[2] J. A. Harvey, Komaba lectures on noncommutative solitons and D-branes, hep-th/0102076

[3] O. Lechtenfeld, A. D. Popov, JHEP, 11 (2001), 040 ; hep-th/0106213 | DOI | MR

[4] A. V. Domrin, O. Lechtenfeld, S. Petersen, JHEP, 03 (2005), 045 ; hep-th/0412001 | DOI | MR

[5] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. III. Psevdodifferentsialnye operatory, Mir, M., 1987 | MR | MR | Zbl

[6] V. Bargmann, Commun. Pure Appl. Math., 14 (1961), 187 | DOI | MR | Zbl

[7] F. E. Burstall, J. H. Rawnsley, Commun. Math. Phys., 110 (1987), 311 | DOI | MR | Zbl

[8] D. J. Newman, H. S. Shapiro, “Fisher spaces of entire functions”, Entire Functions and Related Parts of Analysis, Proc. Sympos. Pure Math., vol. 11 (La Jolla, California, 1966), AMS, Providence, RI, 1968, 360 | DOI | MR | Zbl

[9] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl