Noncommutative Grassmannian $U(1)$ sigma model and a Bargmann--Fock
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 347-357

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Grassmannian version of the noncommutative $U(1)$ sigma model specified by the energy functional $E(P)=\bigl\|[a,P]\bigr\|_{\mathrm{HS}}^2$, where $P$ is an orthogonal projection operator in a Hilbert space $H$ and $a\colon H\to H$ is the standard annihilation operator. With $H$ realized as a Bargmann–Fock space, we describe all solutions with a one-dimensional range and prove that the operator $[a,P]$ is densely defined in $H$ for a certain class of projection operators $P$ with infinite-dimensional ranges and kernels.
Keywords: noncommutative $U(1)$ sigma model, Bargmann–Fock space.
@article{TMF_2007_153_3_a1,
     author = {A. V. Komlov},
     title = {Noncommutative {Grassmannian} $U(1)$ sigma model and a {Bargmann--Fock}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {347--357},
     publisher = {mathdoc},
     volume = {153},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a1/}
}
TY  - JOUR
AU  - A. V. Komlov
TI  - Noncommutative Grassmannian $U(1)$ sigma model and a Bargmann--Fock
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 347
EP  - 357
VL  - 153
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a1/
LA  - ru
ID  - TMF_2007_153_3_a1
ER  - 
%0 Journal Article
%A A. V. Komlov
%T Noncommutative Grassmannian $U(1)$ sigma model and a Bargmann--Fock
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 347-357
%V 153
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a1/
%G ru
%F TMF_2007_153_3_a1
A. V. Komlov. Noncommutative Grassmannian $U(1)$ sigma model and a Bargmann--Fock. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 347-357. http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a1/