Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 291-346
Voir la notice de l'article provenant de la source Math-Net.Ru
For positive integers $p=k+2$, we construct a logarithmic extension of the
$\widehat{s\ell}_k$ conformal field theory of integrable representations by
taking the kernel of two fermionic screening operators in a butterfly
resolution of a three-boson realization of $\widehat{s\ell}_k$. The
currents $W^-(z)$ and $W^+(z)$ of a $W$-algebra acting in the kernel are
determined by a highest-weight state of dimension $4p-2$ and charge $2p-1$
and by a $(\theta=1)$-twisted highest-weight state of the same dimension
$4p-2$ and opposite charge $-2p+1$. We construct $2p$ $W$-algebra
representations, evaluate their characters, and show that together with the
$p-1$ integrable representation characters, they generate a modular group
representation whose structure is described as a deformation of the
$(9p-3)$-dimensional representation
$\mathscr{R}_{p+1}\oplus\mathbb{C}^2{\otimes}\mathscr{R}_{p+1}\oplus
\mathscr{R}_{p-1}\oplus\mathbb{C}^2\otimes
\mathscr{R}_{p-1}\oplus\mathbb{C}^3\otimes\mathscr{R}_{p-1}$,
where $\mathscr{R}_{p-1}$ is the
$SL(2,\mathbb{Z})$-representation on $\widehat{s\ell}_k$
integrable-representation characters and $\mathscr{R}_{p+1}$ is a
$(p+1)$-dimensional $SL(2,\mathbb{Z})$-representation known from the
logarithmic $(p,1)$ model. The dimension $9p-3$ is conjecturally the
dimension of the space of torus amplitudes, and the $\mathbb{C}^n$ with
$n=2$ and $3$ suggest the Jordan cell sizes in indecomposable $W$-algebra
modules. We show that under Hamiltonian reduction, the $W$-algebra currents
map into the currents of the triplet $W$-algebra of the logarithmic $(p,1)$
model.
Keywords:
logarithmic conformal field theory, $W$-algebra, fermionic screening, butterfly resolution, characters
Mots-clés : modular transformation.
Mots-clés : modular transformation.
@article{TMF_2007_153_3_a0,
author = {A. M. Semikhatov},
title = {Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {291--346},
publisher = {mathdoc},
volume = {153},
number = {3},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a0/}
}
A. M. Semikhatov. Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 291-346. http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a0/