Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 291-346

Voir la notice de l'article provenant de la source Math-Net.Ru

For positive integers $p=k+2$, we construct a logarithmic extension of the $\widehat{s\ell}_k$ conformal field theory of integrable representations by taking the kernel of two fermionic screening operators in a butterfly resolution of a three-boson realization of $\widehat{s\ell}_k$. The currents $W^-(z)$ and $W^+(z)$ of a $W$-algebra acting in the kernel are determined by a highest-weight state of dimension $4p-2$ and charge $2p-1$ and by a $(\theta=1)$-twisted highest-weight state of the same dimension $4p-2$ and opposite charge $-2p+1$. We construct $2p$ $W$-algebra representations, evaluate their characters, and show that together with the $p-1$ integrable representation characters, they generate a modular group representation whose structure is described as a deformation of the $(9p-3)$-dimensional representation $\mathscr{R}_{p+1}\oplus\mathbb{C}^2{\otimes}\mathscr{R}_{p+1}\oplus \mathscr{R}_{p-1}\oplus\mathbb{C}^2\otimes \mathscr{R}_{p-1}\oplus\mathbb{C}^3\otimes\mathscr{R}_{p-1}$, where $\mathscr{R}_{p-1}$ is the $SL(2,\mathbb{Z})$-representation on $\widehat{s\ell}_k$ integrable-representation characters and $\mathscr{R}_{p+1}$ is a $(p+1)$-dimensional $SL(2,\mathbb{Z})$-representation known from the logarithmic $(p,1)$ model. The dimension $9p-3$ is conjecturally the dimension of the space of torus amplitudes, and the $\mathbb{C}^n$ with $n=2$ and $3$ suggest the Jordan cell sizes in indecomposable $W$-algebra modules. We show that under Hamiltonian reduction, the $W$-algebra currents map into the currents of the triplet $W$-algebra of the logarithmic $(p,1)$ model.
Keywords: logarithmic conformal field theory, $W$-algebra, fermionic screening, butterfly resolution, characters
Mots-clés : modular transformation.
@article{TMF_2007_153_3_a0,
     author = {A. M. Semikhatov},
     title = {Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--346},
     publisher = {mathdoc},
     volume = {153},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a0/}
}
TY  - JOUR
AU  - A. M. Semikhatov
TI  - Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 291
EP  - 346
VL  - 153
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a0/
LA  - ru
ID  - TMF_2007_153_3_a0
ER  - 
%0 Journal Article
%A A. M. Semikhatov
%T Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 291-346
%V 153
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a0/
%G ru
%F TMF_2007_153_3_a0
A. M. Semikhatov. Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 291-346. http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a0/