Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 291-346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For positive integers $p=k+2$, we construct a logarithmic extension of the $\widehat{s\ell}_k$ conformal field theory of integrable representations by taking the kernel of two fermionic screening operators in a butterfly resolution of a three-boson realization of $\widehat{s\ell}_k$. The currents $W^-(z)$ and $W^+(z)$ of a $W$-algebra acting in the kernel are determined by a highest-weight state of dimension $4p-2$ and charge $2p-1$ and by a $(\theta=1)$-twisted highest-weight state of the same dimension $4p-2$ and opposite charge $-2p+1$. We construct $2p$ $W$-algebra representations, evaluate their characters, and show that together with the $p-1$ integrable representation characters, they generate a modular group representation whose structure is described as a deformation of the $(9p-3)$-dimensional representation $\mathscr{R}_{p+1}\oplus\mathbb{C}^2{\otimes}\mathscr{R}_{p+1}\oplus \mathscr{R}_{p-1}\oplus\mathbb{C}^2\otimes \mathscr{R}_{p-1}\oplus\mathbb{C}^3\otimes\mathscr{R}_{p-1}$, where $\mathscr{R}_{p-1}$ is the $SL(2,\mathbb{Z})$-representation on $\widehat{s\ell}_k$ integrable-representation characters and $\mathscr{R}_{p+1}$ is a $(p+1)$-dimensional $SL(2,\mathbb{Z})$-representation known from the logarithmic $(p,1)$ model. The dimension $9p-3$ is conjecturally the dimension of the space of torus amplitudes, and the $\mathbb{C}^n$ with $n=2$ and $3$ suggest the Jordan cell sizes in indecomposable $W$-algebra modules. We show that under Hamiltonian reduction, the $W$-algebra currents map into the currents of the triplet $W$-algebra of the logarithmic $(p,1)$ model.
Keywords: logarithmic conformal field theory, $W$-algebra, fermionic screening, butterfly resolution, characters
Mots-clés : modular transformation.
@article{TMF_2007_153_3_a0,
     author = {A. M. Semikhatov},
     title = {Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--346},
     year = {2007},
     volume = {153},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a0/}
}
TY  - JOUR
AU  - A. M. Semikhatov
TI  - Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 291
EP  - 346
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a0/
LA  - ru
ID  - TMF_2007_153_3_a0
ER  - 
%0 Journal Article
%A A. M. Semikhatov
%T Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 291-346
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a0/
%G ru
%F TMF_2007_153_3_a0
A. M. Semikhatov. Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 3, pp. 291-346. http://geodesic.mathdoc.fr/item/TMF_2007_153_3_a0/

[1] V. Gurarie, Nucl. Phys. B, 410 (1993), 535 ; hep-th/9303160 | DOI | MR | Zbl

[2] M. R. Gaberdiel, H. G. Kausch, Phys. Lett. B, 386 (1996), 131 ; hep-th/9606050 | DOI | MR

[3] M. R. Gaberdiel, Internat J. Modern Phys. A, 18 (2003), 4593 ; hep-th/0111260 | DOI | MR | Zbl

[4] A. Nichols, JHEP, 04 (2002), 056 ; ; J. Stat. Mech., 09 (2004), 006 ; hep-th/0112094hep-th/0307050 | DOI | MR | MR | Zbl

[5] F. Lesage, P. Mathieu, J. Rasmussen, H. Saleur, Nucl. Phys. B, 686 (2004), 313 ; hep-th/0311039 | DOI | MR | Zbl

[6] J. Rasmussen, Nucl. Phys. B, 736 (2006), 225 ; hep-th/0508179 | DOI | MR | Zbl

[7] H. G. Kausch, Phys. Lett. B, 259 (1991), 448 | DOI | MR

[8] M. R. Gaberdiel, H. G. Kausch, Nucl. Phys. B, 538 (1999), 631 ; hep-th/9807091 | DOI | MR | Zbl

[9] A. Nichols, JHEP, 01 (2003), 022 ; hep-th/0205170 | DOI | MR

[10] J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, Commun. Math. Phys., 247 (2004), 713 ; hep-th/0306274 | DOI | MR | Zbl

[11] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Commun. Math. Phys., 265 (2006), 47 ; hep-th/0504093 | DOI | MR | Zbl

[12] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Nucl. Phys. B, 757 (2006), 303 ; hep-th/0606196 | DOI | MR | Zbl

[13] M. R. Gaberdiel, I. Runkel, J. Phys. A, 39 (2006), 14745 ; hep-th/0608184 | DOI | MR | Zbl

[14] T. Creutzig, T. Quella, V. Schomerus, New boundary conditions for the $c=-2$ ghost system, hep-th/0612040 | MR

[15] M. Miyamoto, Duke Math. J., 122 (2004), 51 ; math.QA/0209101 | DOI | MR | Zbl

[16] N. Carqueville, M. Flohr, J. Phys. A, 39 (2006), 951 ; math-ph/0508015 | DOI | MR | Zbl

[17] J. Fuchs, On non-semisimple fusion rules and tensor categories, hep-th/0602051 | MR

[18] Y.-Z. Huang, J. Lepowsky, L. Zhang, Logarithmic tensor product theory for generalized modules for a conformal vertex algebra, Part I, math.QA/0609833 | MR

[19] P. A. Pearce, J. Rasmussen, J.-B. Zuber, J. Stat. Mech., 11 (2006), 017 ; hep-th/0607232 | MR

[20] M. Jeng, G. Piroux, P. Ruelle, J. Stat. Mech., 10 (2006), 015 ; cond-mat/0609284

[21] N. Read, H. Saleur, Nucl. Phys. B, 777 (2007), 316 ; hep-th/0701117 | DOI | MR | Zbl

[22] A. Nichols, JHEP, 08 (2003), 040 ; hep-th/0302075 | DOI | MR

[23] J. Fjelstad, J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, Nucl. Phys. B, 633 (2002), 379 ; hep-th/0201091 | DOI | MR | Zbl

[24] J. Rasmussen, J. Stat. Mech., 09 (2004), 007 ; math-ph/0408011 | MR | Zbl

[25] V. Gurarie, A. W. W. Ludwig, “Conformal field theory at central charge $c=0$ and two-dimensional critical systems with quenched disorder”, From Fields to Strings. Circumnavigating Theoretical Physics, Ian Kogan Memorial Collection, vol. 2, eds. M. Shifman, A. Vainstein, J. Weater, World Scientific, Singapore, 2005, 1384 ; hep-th/0409105 | DOI | MR | Zbl

[26] M. Flohr, M. R. Gaberdiel, J. Phys. A, 39 (2006), 1955 ; hep-th/0509075 | DOI | MR | Zbl | MR

[27] V. Schomerus, H. Saleur, Nucl. Phys. B, 734 (2006), 221 ; hep-th/0510032 | DOI | MR | Zbl

[28] H. Eberle, M. Flohr, J. Phys. A, 39 (2006), 15245 ; hep-th/0604097 | DOI | MR | Zbl

[29] M. Flohr, C. Grabow, M. Koehn, Nucl. Phys. B, 768 (2007), 263 ; hep-th/0611241 | DOI | MR | Zbl

[30] D. Kazhdan, G. Lusztig, J. Amer. Math. Soc., 6 (1993), 905 ; 949 ; 7 (1994), 335 ; 383 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl

[31] A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, B. L. Feigin, TMF, 148:3 (2006), 398 ; math.QA/0512621 | DOI | MR | Zbl

[32] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, J. Math. Phys., 48 (2007), 032303 ; math.QA/0606506 | DOI | MR | Zbl

[33] G. Moore, N. Seiberg, “Lecture on RCFT”, Physics, Geometry, and Topology (Banff, Canada, 1989), NATO Adv. Sci. Inst. Ser. B. Phys., 238, Plenum, New York, 1990, 263 | MR | Zbl

[34] E. Frenkel, D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Math. Surveys Monogr., 88, AMS, Providence, 2001 | MR | Zbl

[35] B. Bakalov, A. A. Kirillov, Lectures on Tensor Categories and Modular Functors, Univ. Lecture Ser., 21, AMS, Providence, 2001 | MR | Zbl

[36] J. Fuchs, I. Runkel, C. Schweigert, Nucl. Phys. B, 646 (2002), 353 ; ; 678, 2004 ; hep-th/0204148hep-th/0306164 | DOI | MR | Zbl | DOI | MR | Zbl

[37] G. Felder, Nucl. Phys. B, 317 (1989), 215 | DOI | MR

[38] P. Bouwknegt, J. McCarthy, K. Pilch, Lett. Math. Phys., 23 (1991), 193 ; hep-th/9108023 | DOI | MR | Zbl

[39] V. G. Kac, M. Wakimoto, Proc. Nat. Acad. Sci. USA, 85 (1988), 4956 | DOI | MR | Zbl

[40] B. L. Feigin, A. M. Semikhatov, V. A. Sirota, I. Yu. Tipunin, Nucl. Phys. B, 536 (1998), 617 ; hep-th/9805179 | DOI | MR | Zbl

[41] A. M. Semikhatov, A. Taormina, I. Yu. Tipunin, Commun. Math. Phys., 255 (2005), 469 ; math.QA/0311314 | DOI | MR | Zbl | MR

[42] F. Lesage, P. Mathieu, J. Rasmussen, H. Saleur, Nucl. Phys. B, 647 (2002), 363 ; hep-th/0207201 | DOI | MR | Zbl

[43] A. M. Semikhatov, B. L. Feigin, TMF, 121:2 (1999), 244 ; hep-th/9810059 | DOI | MR | Zbl

[44] S. E. Parkhomenko, Nucl. Phys. B, 671 (2003), 325 ; ; 731, 2005 ; hep-th/0301070hep-th/0412296 | DOI | MR | Zbl | DOI | MR | Zbl

[45] F. G. Malikov, B. L. Feigin, D. V. Fuks, Funkts. analiz i ego prilozh., 20:2 (1986), 25 | DOI | MR | Zbl

[46] P. Bowcock, B. L. Feigin, A. M. Semikhatov, A. Taormina, Commun. Math. Phys., 214 (2000), 495 ; hep-th/9907171 | DOI | MR | Zbl

[47] B. Feigin, T. Miwa, “Extended vertex operator algebras and monomial bases”, Statistical Physics on the Eve of the 21st Century, Ser. Adv. Statist. Mech., 14, World Scientific, River Edge, 1999, 366 ; math.QA/9901067 | MR

[48] B. Feigin, M. Jimbo, T. Miwa, “Vertex operator algebra arising from the minimal series $M(3,p)$ and monomial basis”, MathPhys Odyssey 2001, Prog. Math. Phys., 23, Birkhäuser, Boston, 2002, 179 ; math.QA/0012193 | MR | Zbl

[49] P. Jacob, P. Mathieu, Nucl. Phys. B, 733 (2006), 205 ; hep-th/0506074 | DOI | MR | Zbl

[50] P. Mathieu, D. Ridout, Nucl. Phys. B, 765 (2007), 201 ; hep-th/0609226 | DOI | MR | Zbl

[51] P. Furlan, A. Ch. Ganchev, R. Paunov, V. B. Petkova, Nucl. Phys. B, 394 (1993), 665 ; ; A. Ch. Ganchev, V. B. Petkova, Phys. Lett. B, 293 (1992), 56 ; ; 318, 1993 ; hep-th/9201080hep-th/9207032hep-th/9308037 | DOI | MR | Zbl | DOI | MR | DOI | MR

[52] B. L. Feigin, A. M. Semikhatov, Nucl. Phys. B, 698 (2004), 409 ; math.QA/0401164 | DOI | MR | Zbl

[53] A. M. Semikhatov, Higher string functions, higher-level Appell functions, and the logarithmic $\widehat{sl}(2)_k/u(1)$ CFT model, arXiv: 0710/2028v2 | MR

[54] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | MR | Zbl | Zbl

[55] V. G. Kac, D. A. Kazhdan, Adv. Math., 34 (1979), 97 | DOI | MR | Zbl

[56] M. Wakimoto, Commun. Math. Phys., 104 (1986), 605 | DOI | MR | Zbl

[57] B. L. Feigin, E. V. Frenkel, UMN, 43:5 (1988), 227 | DOI | MR | Zbl

[58] D. Mumford, Tata Lectures on Theta, vol. 1, Progr. Math., 28, Birkhäuser, Boston, 1983 ; vol. 2, Progr. Math., 43, Birkhäuser, Boston, 1984 | DOI | MR | Zbl | MR | Zbl

[59] J. Cardy, J. Phys. A, 25 (1992), L201 ; hep-th/9111026 | DOI | MR | Zbl

[60] A. M. Semikhatov, Inverting the Hamiltonian reduction in string theory, Talk at the 28th Symposium on the Theory of Elementary Particles (Wendisch-Rietz, 1994) | MR

[61] S. Mukhi, S. Panda, Nucl. Phys. B, 338 (1990), 263 | DOI | MR

[62] B. L. Feigin, A. M. Semikhatov, Nucl. Phys. B, 610 (2001), 489 ; hep-th/0102078 | DOI | MR | Zbl

[63] T. Kerler, Commun. Math. Phys., 168 (1995), 353 ; hep-th/9402017 | DOI | MR | Zbl

[64] B. Abdesselam, D. Arnaudon, M. Bauer, J. Phys. A, 30 (1997), 867 ; q-alg/9605015 | DOI | MR | Zbl

[65] K. Erdmann, E. L. Green, N. Snashall, R. Taillefer, J. Pure Appl. Algebra, 204 (2006), 413 ; math.RT/0410017 | DOI | MR | Zbl

[66] A. M. Polyakov, Internat. J. Modern Phys. A, 5 (1990), 833 | DOI | MR

[67] M. Bershadsky, Commun. Math. Phys., 139 (1991), 71 | DOI | MR | Zbl