Nonholonomic Riemann and Weyl tensors for flag manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 2, pp. 186-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On any manifold, any nondegenerate symmetric 2-form (metric) and any nondegenerate skew-symmetric differential form $\omega$ can be reduced to a canonical form at any point but not in any neighborhood: the corresponding obstructions are the Riemannian tensor and $d\omega$. The obstructions to flatness (to reducibility to a canonical form) are well known for any $G$-structure, not only for Riemannian or almost symplectic structures. For a manifold with a nonholonomic structure (nonintegrable distribution), the general notions of flatness and obstructions to it, although of huge interest (e.g., in supergravity) were not known until recently, although particular cases have been known for more than a century (e.g., any contact structure is nonholonomically “flat”: it can always be reduced locally to a canonical form). We give a general definition of the nonholonomic analogues of the Riemann tensor and its conformally invariant analogue, the Weyl tensor, in terms of Lie algebra cohomology and quote Premet's theorems describing these cohomologies. Using Premet's theorems and the {\tt SuperLie} package, we calculate the tensors for flag manifolds associated with each maximal parabolic subalgebra of each simple Lie algebra (and in several more cases) and also compute the obstructions to flatness of the $G(2)$-structure and its nonholonomic superanalogue.
Keywords: Lie algebra cohomology, Riemann tensor, nonholonomic manifold, flag manifold
Mots-clés : Cartan prolongation, $G_2$-structure.
@article{TMF_2007_153_2_a2,
     author = {P. Ya. Grozman and D. A. Leites},
     title = {Nonholonomic {Riemann} and {Weyl} tensors for flag manifolds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {186--219},
     year = {2007},
     volume = {153},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_2_a2/}
}
TY  - JOUR
AU  - P. Ya. Grozman
AU  - D. A. Leites
TI  - Nonholonomic Riemann and Weyl tensors for flag manifolds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 186
EP  - 219
VL  - 153
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_2_a2/
LA  - ru
ID  - TMF_2007_153_2_a2
ER  - 
%0 Journal Article
%A P. Ya. Grozman
%A D. A. Leites
%T Nonholonomic Riemann and Weyl tensors for flag manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 186-219
%V 153
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_2_a2/
%G ru
%F TMF_2007_153_2_a2
P. Ya. Grozman; D. A. Leites. Nonholonomic Riemann and Weyl tensors for flag manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 2, pp. 186-219. http://geodesic.mathdoc.fr/item/TMF_2007_153_2_a2/

[1] G. Gerts, Printsipy mekhaniki, izlozhennye v novoi svyazi, AN SSSR, M., 1959 | MR | Zbl

[2] A. Puankare, “Idei Gertsa v mekhanike”, v kn.: G. Gerts, Printsipy mekhaniki, izlozhennye v novoi svyazi, AN SSSR, M., 1959, 310–333 | MR | Zbl

[3] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, VINITI, M., 1987, 5–85 | MR | Zbl

[4] A. M. Vershik, “Klassicheskie i neklassicheskie dinamiki so svyazyami”, Geometriya i topologiya v globalnykh nelineinykh zadachakh, Novoe v globalnom analize, VGU, Voronezh, 1984, 23–48 | MR | Zbl

[5] A. Agrachev, Yu. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004 | DOI | MR | Zbl

[6] A. M. Bloch, Nonholonomic Mechanics and Control, Interdiscip. Appl. Math., 24, Springer, New York, 2003 | DOI | MR | Zbl

[7] V. M. Sergeev, Predely ratsionalnosti. Termodinamicheskii podkhod k teorii ekonomicheskogo ravnovesiya, Fazis, M., 1999

[8] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Sovrem. matem., In-t kompyuternykh issledovanii, Moskva–Izhevsk, 2002 | MR | Zbl

[9] V. Sergeev, The Thermodynamical Approach to Market, MPIMiS preprint 76/2006 (translated from the Russian and edited by Dimitry Leites), http://www.mis.mpg.de/preprints/2006/prepr2006_76.html | MR

[10] D. Leites, Homology Homotopy Appl., 4:2(2) (2002), 397–407 ; ; Proc. Workshop on mathematical physics and geometry (ICTP, Trieste, Italy, March 4–15, 1991), math.RT/0202213 http://agenda.ictp.trieste.it/agenda/current/fullAgenda.php?ida=a02210 | DOI | MR | Zbl

[11] D. Leites, E. Poletaeva, “Supergravities and contact type structures on supermanifolds”, Second International Conference on Algebra (Barnaul, Russia, 1991), Contemp. Math., 184, AMS, Providence, RI, 1995, 267–274 | DOI | MR | Zbl

[12] P. Grozman, D. Leites, “From supergravity to ballbearings”, Supersymmetries and Quantum Symmetries (Dubna, 1997), Lecture Notes in Phys., 524, eds. J. Wess, E.Ȧ. Ivanov, Springer, Berlin, 1999, 58–67 | DOI | MR

[13] N. Tanaka, J. Math. Soc. Japan, 22 (1970), 180–212 | DOI | MR | Zbl

[14] N. Tanaka, J. Math. Kyoto Univ., 10 (1970), 1–82 | DOI | MR | Zbl

[15] N. Tanaka, Hokkaido Math. J., 8:1 (1979), 23–84 | DOI | MR | Zbl

[16] K. Yamaguchi, “Differential systems associated with simple graded Lie algebras”, Progress in Differential Geometry, Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo, 1993, 413–494 | MR | Zbl

[17] K. Yamaguchi, T. Yatsui, “Geometry of higher order differential equations of finite type associated with symmetric spaces”, Lie groups, geometric structures and differential equations – one hundred years after Sophus Lie (Kyoto/Nara, 1999), Adv. Stud. Pure Math., 37, eds. T. Morimoto, H. Sato, K. Yamaguchi, Math. Soc. Japan, Tokyo, 2002, 397–458 | MR | Zbl

[18] V. Dragovic, B. Gajic, Regul. Chaotic Dyn., 8:1 (2003), 105–123 ; math-ph/0304018 | DOI | MR | Zbl

[19] P. Grozman, {\tt SuperLie}, http://www.equaonline.com/math/SuperLie

[20] R. J. Baston, Duke Math. J., 63:1 (1991), 81–112 ; 113–138 | DOI | MR | Zbl | DOI | MR | Zbl

[21] A. Čap, H. Schichl, Hokkaido Math. J., 29:3 (2000), 453–505 | DOI | MR | Zbl

[22] A. Čap, J. Reine Angew. Math., 2005, no. 582, 143–172 ; math.DG/0102097 | DOI | MR | Zbl

[23] A. Čap, J. Slovák, Math. Scand., 93:1 (2003), 53–90 ; math.DG/0001166 | DOI | MR | Zbl

[24] A. Čap, J. Slovák, V. Souček, Ann. of Math. (2), 154:1 (2001), 97–113 | DOI | MR | Zbl

[25] A. Čap, J. Slovák, Rend. Circ. Mat. Palermo (2) Suppl., 1996, no. 43, 95–101 | MR | Zbl

[26] A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, E. S. Sokatchev, Harmonic Superspace, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[27] P. Heslop, P. S. Howe, Class. Quantum Grav., 17:18 (2000), 3743–3768 | DOI | MR | Zbl

[28] K. Ehlers, J. Koiller, R. Montgomery, P. Rios, “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, eds. J. E. Marsden, T. S. Ratiu, Birkhäuser, Boston, MA, 2005, 75–120 | DOI | MR | Zbl

[29] J. N. Tavares, J. Geom. Phys., 45:1–2 (2003), 1–23 | DOI | MR | Zbl

[30] I. M. Schepochkina, TMF, 147:3 (2006), 450–469 ; math.RT/0509472 | DOI | MR

[31] S. Vacaru, Interactions, Strings and Isotopies in Higher Order Anisotropic Superspaces, Hadronic Press Monogr. Math., Hadronic Press, Palm Harbor, FL, 1998 | MR | Zbl

[32] A. Goncharov, Funkts. analiz i ego prilozh., 15:3 (1981), 83–84 ; Selecta Math. Soviet., 6:4 (1987), 307–340 | MR | Zbl | MR | Zbl

[33] B. Kostant, “A generalization of the Bott–Borel–Weil theorem and Euler number multiplets of representations”, Conférence Moshé Flato, 1999. Vol. 1. Quantization, Deformations, and Symmetries (Dijon, France, 1999), Math. Phys. Stud., 21, Kluwer, Dordrecht, 2000, 309–325 | MR | Zbl

[34] S. Sternberg, Lectures on Differential Geometry, 2nd ed., Chelsey Publ., New York, 1983 | MR | Zbl

[35] V. Guillemin, Trans. Amer. Math. Soc., 116 (1965), 544–560 | DOI | MR | Zbl

[36] Yu. Vess, Dzh. Begger, Supersimmetriya i supergravitatsiya, URSS, M., 1998 | MR | Zbl

[37] Yu. I. Manin, Kalibrovochnye polya i kompleksnaya geometriya, Nauka, M., 1984 | MR | MR | Zbl

[38] D. Leites, I. Shchepochkina, Classification of the simple Lie superalgebras of vector fields, preprint MPIM-2003-28

[39] I. Shchepochkina, C. R. Acad. Bulgare Sci., 36:3 (1983), 313–314 | MR | Zbl

[40] I. M Schepochkina, Funkts. analiz i ego prilozh., 33:3 (1999), 59–72 | DOI | MR | Zbl

[41] I. Shchepochkina, Represent. Theory, 3:13 (1999), 373–415 | DOI | MR | Zbl

[42] P. Woit, Quantum field theory and representation theory: a sketch, hep-th/0206135

[43] D. Leites, E. Poletaeva, V. Serganova, J. Nonlinear Math. Phys., 9:4 (2002), 394–425 ; math.DG/0306209 | DOI | MR | Zbl

[44] M. Atiyah, E. Witten, Adv. Theor. Math. Phys., 6:1 (2002), 1–106 | DOI | MR | Zbl

[45] R. L. Bryant, Some remarks on $G_2$-structures, math.DG/0305124 | MR

[46] V. V. Fock, A. B. Goncharov, “Cluster X-varieties, amalgamation and Poisson-Lie groups”, Algebraic Geometry and Number Theory, Progr. Math., 253, Birkhäuser, Boston, MA, 2006, 27–68 ; math.RT/0508408 | DOI | MR | Zbl

[47] P. Grozman, D. Leites, {\tt SuperLie} and problems (to be) solved with it, preprint MPIM-Bonn 2003-39 | MR

[48] E. Poletaeva, Analogs of the Riemannian and Penrose tensors on supermanifolds, math.RT/0510165

[49] D. Leites, V. Serganova, G. Vinel, “Classical superspaces and related structures”, Differential geometric methods in theoretical physics, Proc. 19th Int. Conf. (Rapallo, Italy, 1990), Springer Lect. Notes Phys., 375, eds. U. Bruzzo et.al., 1991, 286–297 | DOI | MR | Zbl

[50] I. Penkov, V. Serganova, Ann. Inst. Fourier (Grenoble), 39:4 (1989), 845–873 | DOI | MR | Zbl

[51] Y. Se-Ashi, Hokkaido Math. J., 17:2 (1988), 151–195 | DOI | MR | Zbl

[52] T. Morimoto, Hokkaido Math. J., 22:3 (1993), 263–347 ; “Lie algebras, geometric structures and differential equations on filtered manifolds”, Lie Groups, Geometric Structures and Differential Equations – One Hundred Years After Sophus Lie (Kyoto/Nara, 1999), Adv. Stud. Pure Math., 37, eds. T. Morimoto, H. Sato, K. Yamaguchi, Math. Soc. Japan, Tokyo, 2002, 205–252 | DOI | MR | Zbl | MR | Zbl

[53] B. L. Feigin, D. B. Fuks, “Kogomologii grupp i algebr Li”, Gruppy Li i algebry Li, 2, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 21, VINITI, M., 1988, 121–209 | MR | MR | Zbl

[54] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, t. 1, 2, Nauka, M., 1981 | MR | MR | Zbl

[55] V. Gershkovich, A. Vershik, J. Geom. Phys., 5:3 (1988), 407–452 ; А. М. Вершик, В. Я. Гершкович, Записки науч. сем. ЛОМИ, 172 (1989), 21–40 | DOI | MR | Zbl | MR | Zbl

[56] R. Montgomery, “Engel deformations and contact structures”, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, 196, AMS, Providence, RI, 1999, 103–117 | MR | Zbl

[57] V. Ovsienko, S. Tabachnikov, Projective differential geometry old and new. From Schwarzian derivative to cohomology of diffeomorphism groups, Cambridge Tracts in Math., 165, Cambridge Univ. Press, Cambridge, 2005 ; http://www.math.psu.edu/tabachni/prints/preprints.html | MR | Zbl

[58] I. Biswas, A. Raina, Internat. Math. Res. Notices, 1996, no. 15, 753–768 ; 1999, no. 13, 685–716 ; Differential Geom. Appl., 15:3 (2001), 203–219 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[59] P. Grozman, D. Leites, I. Schepochkina, “The analogs of the Riemann tensor for exceptional structures on supermanifolds”, Fundamentalnaya matematika segodnya. K desyatiletiyu Nezavisimogo Moskovskogo Universiteta (Moskva, 2001), eds. S. K. Lando, O. K. Sheinman, MTsNMO, M., 2003, 89–109 ; preprint MPIM-2003-18; math.RT/0509525 | MR

[60] M. Zhitomirskii, Typical Singularities of Differential $1$-forms and Pfaffian Equations, Transl. Math. Monogr., 113, AMS, Providence, RI; Mir Publ., Moscow, 1992 | MR | Zbl

[61] A. Lebedev, D. Leites, I. Shereshevskii, “Lie superalgebra structures in $C^{\bullet} (\mathfrak{n}; \mathfrak{n})$ and $H^{\bullet}(\mathfrak{n}, \mathfrak{n})$”, Lie Groups and Invariant Theory, Amer. Math. Soc. Transl. Ser. 2, 213, ed. É. Vinberg, AMS, Providence, RI, 2005, 157–172 ; math.KT/0404139 | MR | Zbl

[62] I. N. Bernstein, I. M. Gelfand, S. I. Gelfand, “Differential operators on the base affine space and a study of $\mathfrak{g}$-modules”, Lie Groups and Their Representations (Budapest, 1971), Halsted, New York, 1975, 21–64 | MR | Zbl

[63] N. Burbaki, Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR | Zbl

[64] E. B. Vinberg, A. L. Onischik, Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR | Zbl

[65] P. Grozman, D. Leites, Czechoslovak J. Phys., 51:1 (2001), 1–21 ; hep-th/9702073 | DOI | MR | Zbl

[66] I. B. Penkov, “Teoriya Borelya–Veilya–Botta dlya klassicheskikh supergrupp Li”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 32, VINITI, M., 1988, 71–124 | MR | Zbl