Interphase Hamiltonian and first-order phase transitions: A generalization of the Lee–Yang theorem
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 98-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize the Pirogov–Sinai theory and prove the results applicable to first-order phase transitions in the case of both bulk and surface phase lattice models. The region of first-order phase transitions is extended with respect to the chemical activities to the entire complex space $\mathbb C^\Phi$, where $\Phi$ is the set of phases in the model. We prove a generalization of the Lee–Yang theorem: as functions of the activities, the partition functions with a stable boundary condition have no zeros in $\mathbb C^\Phi$.
Keywords: Pirogov–Sinai theory, interphase Hamiltonian, cluster expansion of the interphase Hamiltonian, equation of state, phase diagram, fc-invariance of multiphase contour models.
Mots-clés : multiphase contour model, contour equations
@article{TMF_2007_153_1_a7,
     author = {A. G. Basuev},
     title = {Interphase {Hamiltonian} and first-order phase transitions: {A~generalization} of {the~Lee{\textendash}Yang} theorem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {98--123},
     year = {2007},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a7/}
}
TY  - JOUR
AU  - A. G. Basuev
TI  - Interphase Hamiltonian and first-order phase transitions: A generalization of the Lee–Yang theorem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 98
EP  - 123
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a7/
LA  - ru
ID  - TMF_2007_153_1_a7
ER  - 
%0 Journal Article
%A A. G. Basuev
%T Interphase Hamiltonian and first-order phase transitions: A generalization of the Lee–Yang theorem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 98-123
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a7/
%G ru
%F TMF_2007_153_1_a7
A. G. Basuev. Interphase Hamiltonian and first-order phase transitions: A generalization of the Lee–Yang theorem. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 98-123. http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a7/

[1] S. A. Pirogov, Ya. G. Sinai, TMF, 25:3 (1975), 358–369 ; 26:1 (1976), 61–76 | DOI | MR | DOI | MR

[2] J. Z. Imbrie, Commun. Math. Phys., 82:2 (1981), 261–304 ; 82:3, 305–343 | DOI | MR | DOI | MR

[3] M. Zahradnik, Commun. Math. Phys., 93:4 (1984), 559–581 | DOI | MR

[4] R. Kotecký, D. Preiss, Rend. Circ. Mat. Palermo (2), 1984, no. 3(suppl.), 161–164 | MR

[5] A. G. Basuev, TMF, 58:2 (1984), 261–278 | DOI | MR

[6] J. Bricmont, K. Kuroda, J. L. Lebowitz, Commun. Math. Phys., 101:4 (1985), 501–538 | DOI | MR | Zbl

[7] J. Fröhlich, A. Bovier, U. Glaus, “Mathematical aspects of the physics of disordered systems”, Critical Phenomena, Random Systems and Gauge Theories (Les Houches, France, 1984), North-Holland, Amsterdam, 1986, 725–893 | MR | Zbl

[8] J. Slawny, “Low-temperature properties of classical lattice systems: phase transitions and phase diagrams”, Phase Transitions and Critical Phenomena, vol. 11, eds. C. Domb, J. L. Lebowitz, Academic Press, London–New York, 1987, 127–205 | MR

[9] A. G. Basuev, TMF, 64:1 (1985), 103–129 ; 72:2 (1987), 255–268 | DOI | MR | DOI | MR

[10] R. L. Dobrushin, M. Zagradnik, “Phase diagramm for continuous spin models: An extension Pirogov–Sinai theory”, Mathematical Problems of Statistical Mechanics and Dynamics, Math. Appl. (Soviet Ser.), 6, ed. R. L. Dobrushin, Reidel, Dordrecht, 1986, 1–123 | MR | Zbl

[11] F. Koukiou, D. Petritis, M. Zahradnik, Commun. Math. Phys., 118:3 (1988), 365–383 | DOI | MR | Zbl

[12] Yong Moon Park, Commun. Math. Phys., 114:2 (1988), 219–241 | DOI | MR | Zbl

[13] J. Bricmont, J. Slawny, J. Statist. Phys., 54:1–2 (1989), 89–161 | DOI | MR

[14] J. Fröhlich, L. Rey-Bellet, D. Ueltschi, Commun. Math. Phys., 224:1 (2001), 33–63 | DOI | MR | Zbl

[15] M. Zahradnik, J. Statist. Phys., 47:5–6 (1987), 725–755 | DOI | MR

[16] A. C. D. van Enter, R. Fernández, A. D. Sokal, J. Statist. Phys., 72:5–6 (1993), 879–1167 | DOI | MR | Zbl

[17] R. H. Schonmann, N. Yoshida, Commun. Math. Phys., 189:2 (1997), 299–309 | DOI | MR | Zbl

[18] M. Biskup, C. Borgs, J. T. Chayes et al., Commun. Math. Phys., 251:1 (2004), 79–131 | DOI | MR | Zbl

[19] S. N. Isakov, Commun. Math. Phys., 95:4 (1984), 427–443 | DOI | MR

[20] S. N. Isakov, TMF, 71:3 (1987), 426–440 | DOI | MR

[21] S. Friedli, Ch.-E. Pfister, Commun. Math. Phys., 245:1 (2004), 69–103 | DOI | MR | Zbl

[22] M. E. Fisher, Arch. Rational Mech. Anal., 17:5 (1964), 377–410 | DOI | MR

[23] D. Ryuel, Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971 | MR | Zbl

[24] R. B. Griffiths, “Rigorous results and theorems”, Phase Transition and Critical Phenomena. Vol. 1. Exact Results, eds. C. Domb, M. S. Green, Academic Press, London–New York, 1972, 7–109 | MR

[25] C. N. Yang, T. D. Lee, Phys. Rev. (2), 87:3 (1952), 404–409 ; 410–419 | DOI | MR | Zbl | DOI | MR | Zbl

[26] A. G. Basuev, TMF, 58:1 (1984), 121–136 | DOI | MR

[27] A. G. Basuev, TMF, 39:1 (1979), 94–105 | DOI | MR