Potts model with competing interactions on the Cayley tree: The contour method
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 86-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Potts model with three spin values and with competing interactions of radius $r=2$ on the Cayley tree of order $k=2$. We completely describe the ground states of this model and use the contour method on the tree to prove that this model has three Gibbs measures at sufficiently low temperatures.
Keywords: Cayley tree, ground state, Gibbs measure.
Mots-clés : configuration, contour method
@article{TMF_2007_153_1_a6,
     author = {G. I. Botirov and U. A. Rozikov},
     title = {Potts model with competing interactions on {the~Cayley} tree: {The~contour} method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {86--97},
     year = {2007},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a6/}
}
TY  - JOUR
AU  - G. I. Botirov
AU  - U. A. Rozikov
TI  - Potts model with competing interactions on the Cayley tree: The contour method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 86
EP  - 97
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a6/
LA  - ru
ID  - TMF_2007_153_1_a6
ER  - 
%0 Journal Article
%A G. I. Botirov
%A U. A. Rozikov
%T Potts model with competing interactions on the Cayley tree: The contour method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 86-97
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a6/
%G ru
%F TMF_2007_153_1_a6
G. I. Botirov; U. A. Rozikov. Potts model with competing interactions on the Cayley tree: The contour method. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 86-97. http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a6/

[1] U. A. Rozikov, Lett. Math. Phys., 71 (2005), 27–38 | DOI | MR | Zbl

[2] U. A. Rozikov, J. Stat. Phys., 122 (2006), 217–235 | DOI | MR | Zbl

[3] R. Fernández, Contour ensembles and the description of Gibbsian probability distributions at low temperature, LMRS/persopage/Fernandez/cont.ps.gz

[4] R. A. Minlos, Introduction to Mathematical Statistical Physics, Univ. Lecture Ser., 19, AMS, Providence, RI, 2000 | MR | Zbl

[5] S. A. Pirogov, Ya. G. Sinai, TMF, 25:3 (1975), 358–369 ; 26:1 (1976), 61–76 | DOI | MR | DOI | MR

[6] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl | Zbl

[7] M. Zahradnik, Commun. Math. Phys., 93 (1984), 559–581 | DOI | MR

[8] M. Zahradnik, Rend. Mat. Appl. (7), 18 (1998), 411–486 | MR | Zbl

[9] R. Peierls, Proc. Cambridge Philos. Soc., 32 (1936), 477–481 | DOI | Zbl

[10] P. M. Blekher, N. N. Ganikhodzhaev, Teoriya veroyat. i ee primen., 35:2 (1990), 220–230 | DOI | MR | Zbl

[11] F. M. Mukhamedov, U. A. Rozikov, J. Stat. Phys., 114 (2004), 825–848 | DOI | MR | Zbl

[12] U. A. Rozikov, TMF, 112:1 (1997), 170–175 | DOI | MR | Zbl

[13] U. A. Rozikov, Yu. M. Suhov, Queueing Syst., 46 (2004), 197–212 | DOI | MR | Zbl

[14] R. Bekster, Tochno reshaemye modeli v statisticheskoi fizike, Mir, M., 1985 | MR | MR | Zbl

[15] W. Holsztynski, J. Slawny, Commun. Math. Phys., 61 (1978), 177–190 | DOI | MR

[16] I. A. Kashapov, TMF, 33:1 (1977), 110–118 | DOI | MR

[17] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[18] C. Borgs, Statistical physics expansion methods in combinatorics and computer science, http://research.microsoft.com/b̃orgs/CBMS.pdf