Von Neumann–Wigner theorem: Level repulsion and degenerate eigenvalues
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 68-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the spectral properties of Schrödinger operators with point interactions, focusing attention on the interplay between level repulsion (von Neumann–Wigner theorem) and the symmetry of the configuration of point interactions. The explicit solution of the problem allows observing level repulsion for two centers. For a large number of centers, we investigate the families of point interactions leading to the maximum degeneracy.
Keywords: von Neumann–Wigner theorem, zero-range potential, extension theory, inverse spectral problem.
@article{TMF_2007_153_1_a5,
     author = {Yu. N. Demkov and P. B. Kurasov},
     title = {Von {Neumann{\textendash}Wigner} theorem: {Level} repulsion and degenerate eigenvalues},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {68--85},
     year = {2007},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a5/}
}
TY  - JOUR
AU  - Yu. N. Demkov
AU  - P. B. Kurasov
TI  - Von Neumann–Wigner theorem: Level repulsion and degenerate eigenvalues
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 68
EP  - 85
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a5/
LA  - ru
ID  - TMF_2007_153_1_a5
ER  - 
%0 Journal Article
%A Yu. N. Demkov
%A P. B. Kurasov
%T Von Neumann–Wigner theorem: Level repulsion and degenerate eigenvalues
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 68-85
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a5/
%G ru
%F TMF_2007_153_1_a5
Yu. N. Demkov; P. B. Kurasov. Von Neumann–Wigner theorem: Level repulsion and degenerate eigenvalues. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 68-85. http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a5/

[1] Yu. N. Demkov, V. N. Ostrovskii, Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo LGU, L., 1975

[2] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, 2nd ed., Providence, RI, AMS, 2005 | MR | Zbl

[3] J. von Neumann, E. Wigner, Phys. Z., 30 (1929), 467 | Zbl

[4] M. N. Adamov, Yu. N. Demkov, V. D. Ob'edkov, T. K. Rebane, TEKh, 4 (1968), 147

[5] S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators, London Math. Soc. Lecture Note Ser., 271, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[6] Yu. N. Demkov, G. F. Drukarev, V. V. Kuchinskii, ZhETF, 58 (1970), 944

[7] P. Kurasov, A. Posilicano, Proc. Am. Math. Soc., 133 (2005), 3071 | DOI | MR | Zbl

[8] M. G. Krein, Dokl. AN SSSR, 43 (1944), 323 | MR | Zbl

[9] M. G. Krein, Dokl. AN SSSR, 44 (1944), 131 | MR | Zbl

[10] M. Naimark, Izv. AN SSSR. Ser. matem., 7 (1943), 285 | MR | Zbl