Special polynomials and rational solutions of the hierarchy of the second Painlevé equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 58-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study special polynomials used to represent rational solutions of the hierarchy of the second Painlevé equation. We find several recursion relations satisfied by these polynomials. In particular, we obtain a differential–difference relation that allows finding any polynomial recursively. This relation is an analogue of the Toda chain equations.
Mots-clés : Painlevé equations, rational solution
Keywords: hierarchy of the second Painlevé equation, special polynomial, Toda chain.
@article{TMF_2007_153_1_a4,
     author = {M. V. Demina and N. A. Kudryashov},
     title = {Special polynomials and rational solutions of the~hierarchy of the~second {Painlev\'e} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {58--67},
     year = {2007},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a4/}
}
TY  - JOUR
AU  - M. V. Demina
AU  - N. A. Kudryashov
TI  - Special polynomials and rational solutions of the hierarchy of the second Painlevé equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 58
EP  - 67
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a4/
LA  - ru
ID  - TMF_2007_153_1_a4
ER  - 
%0 Journal Article
%A M. V. Demina
%A N. A. Kudryashov
%T Special polynomials and rational solutions of the hierarchy of the second Painlevé equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 58-67
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a4/
%G ru
%F TMF_2007_153_1_a4
M. V. Demina; N. A. Kudryashov. Special polynomials and rational solutions of the hierarchy of the second Painlevé equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 58-67. http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a4/

[1] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR | Zbl | Zbl

[2] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR | MR | Zbl | Zbl

[3] N. A. Kudryashov, Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, In-t kompyuternykh issledovanii, Moskva–Izhevsk, 2004

[4] A. I. Yablonskii, Vesti AN BSSR. Ser. fiz.-tekh. nauk, 3 (1959), 30–35

[5] A. P. Vorobev, Differents. uravneniya, 1 (1965), 79–81 | MR | Zbl

[6] P. A. Clarkson, Phys. Lett. A, 319:1–2 (2003), 137–144 | DOI | MR | Zbl

[7] K. Okamoto, Math. Ann., 275:2 (1986), 221–255 | DOI | MR | Zbl

[8] H. Umemura, Sugaki Expositions, 11:1 (1998), 77–100 | MR | Zbl

[9] N. A. Kudryashov, Phys. Lett. A, 224:6 (1997), 353–360 | DOI | MR

[10] P. A. Clarkson, E. L. Mansfield, Nonlinearity, 16:3 (2003), R1–R26 | DOI | MR | Zbl

[11] M. V. Demina, N. A. Kudryashov, Chaos, Solitons {} Fractals, 32:2 (2007), 526–537 | DOI | MR | Zbl

[12] N. A. Kudryashov, A. Pickering, “Rational and special solutions of the $P_{II}$ hierarchy”, SIDE III – Symmetries and Integrability of Difference Equations (Sabaudia, 1998), CRM Proc. Lecture Notes, 25, eds. D. Levi, O. Ragnisco, AMS, Providence, RI, 2000, 245–253 | DOI | MR | Zbl

[13] V. I. Gromak, I. Laine, S. Shimomura, Painlevé Differential Equations in the Complex Plane, de Gruyter Stud. Math., 28, de Gruyter, Berlin–New York, 2002 | DOI | MR | Zbl

[14] N. A. Kudryashov, M. B. Soukharev, Phys. Lett. A, 237:4–5 (1998), 206–216 | DOI | MR | Zbl

[15] H. Airault, Stud. Appl. Math., 61:1 (1979), 31–53 | DOI | MR | Zbl

[16] A. N. W. Hone, Phys. D, 118:1–2 (1998), 1–16 | DOI | MR | Zbl

[17] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | MR | Zbl

[18] V. G. Marikhin, A. B. Shabat, TMF, 118:2 (1999), 217–228 | DOI | MR | Zbl