Model equation of the~theory of solitons
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 29-45
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the hierarchy of integrable $(1+2)$-dimensional equations
related to the Lie algebra of vector fields on the line. We construct
solutions in quadratures that contain $n$ arbitrary functions of a single
argument. A simple equation for the generating function of the hierarchy,
which determines the dynamics in negative times and finds applications to
second-order spectral problems, is of main interest. Considering its
polynomial solutions under the condition that the corresponding potential is
regular allows developing a rather general theory of integrable
$(1+1)$-dimensional equations.
Keywords:
hierarchy of commuting vector fields
Mots-clés : Riemann invariant, Dubrovin equations.
Mots-clés : Riemann invariant, Dubrovin equations.
@article{TMF_2007_153_1_a2,
author = {V. E. Adler and A. B. Shabat},
title = {Model equation of the~theory of solitons},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {29--45},
publisher = {mathdoc},
volume = {153},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a2/}
}
V. E. Adler; A. B. Shabat. Model equation of the~theory of solitons. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 29-45. http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a2/