Dynamical principle
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 18-28
Cet article a éte moissonné depuis la source Math-Net.Ru
We suggest a formulation of the dynamical principle for mechanics in which time is not a preferred evolution parameter but plays the role of a new generalized coordinate. The advantage of this approach is the possibility of extending it to dynamical systems in which there is no natural evolution parameter (thermodynamics, equilibrium economics, and the like).
Keywords:
dynamical system, variational principle, symplectic structure.
Mots-clés : Cartan–Liouville form
Mots-clés : Cartan–Liouville form
@article{TMF_2007_153_1_a1,
author = {V. P. Pavlov and V. M. Sergeev},
title = {Dynamical principle},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {18--28},
year = {2007},
volume = {153},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a1/}
}
V. P. Pavlov; V. M. Sergeev. Dynamical principle. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 18-28. http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a1/
[1] P. A. M. Dirak, “Obobschennaya gamiltonova dinamika”, Sobranie nauchnykh trudov. T. 3. Kvantovaya teoriya (nauchnye stati 1948–1984 gg.), Fizmatlit, M., 2004 | MR | Zbl
[2] L. D. Faddeev, TMF, 1 (1969), 3–18 | DOI | MR | Zbl
[3] A. M. Vershik, L. D. Faddeev, Dokl. AN SSSR, 202:3 (1972), 555–557 | Zbl
[4] V. P. Pavlov, A. O. Starinets, TMF, 105 (1995), 429–437 | DOI | MR | Zbl
[5] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Sovrem. matem., In-t kompyuternykh issledovanii, Moskva–Izhevsk, 2002 | MR | Zbl
[6] V. M. Sergeev, Predely ratsionalnosti. Termodinamicheskii podkhod k teorii ekonomicheskogo ravnovesiya, Fazis, M., 1999
[7] K. Godbiion, Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1998 | MR | Zbl