Star product algebras of test functions
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 3-17
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that the Gelfand–Shilov spaces $S^{\beta}_{\alpha}$ are topological algebras
under the Moyal $\star$-product if and only if $\alpha\ge\beta$. These spaces
of test functions can be used to construct a noncommutative field theory. 
The star product depends on the noncommutativity parameter continuously in their
topology. We also prove that the series expansion of the Moyal product
converges absolutely in $S^{\beta}_{\alpha}$ if and only if $\beta1/2$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
noncommutative quantum field theory, Moyal product, topological $*$-algebra, Gelfand–Shilov space.
                    
                  
                
                
                @article{TMF_2007_153_1_a0,
     author = {M. A. Soloviev},
     title = {Star product algebras of test functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {153},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a0/}
}
                      
                      
                    M. A. Soloviev. Star product algebras of test functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a0/
