Star product algebras of test functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 3-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the Gelfand–Shilov spaces $S^{\beta}_{\alpha}$ are topological algebras under the Moyal $\star$-product if and only if $\alpha\ge\beta$. These spaces of test functions can be used to construct a noncommutative field theory. The star product depends on the noncommutativity parameter continuously in their topology. We also prove that the series expansion of the Moyal product converges absolutely in $S^{\beta}_{\alpha}$ if and only if $\beta<1/2$.
Keywords: noncommutative quantum field theory, Moyal product, topological $*$-algebra, Gelfand–Shilov space.
@article{TMF_2007_153_1_a0,
     author = {M. A. Soloviev},
     title = {Star product algebras of test functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--17},
     year = {2007},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a0/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Star product algebras of test functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 3
EP  - 17
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a0/
LA  - ru
ID  - TMF_2007_153_1_a0
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Star product algebras of test functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 3-17
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a0/
%G ru
%F TMF_2007_153_1_a0
M. A. Soloviev. Star product algebras of test functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 153 (2007) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TMF_2007_153_1_a0/

[1] R. J. Szabo, Phys. Rep., 378 (2003), 207–299 | DOI | MR | Zbl

[2] L. Álvarez-Gaumé, M. A. Vázquez-Mozo, Nucl. Phys. B, 668 (2003), 293–321 | DOI | MR | Zbl

[3] M. Chaichian, M. N. Mnatsakanova, K. Nishijima, A. Tureanu, Yu. A. Vernov, Towards an axiomatic formulation of noncommutative field theories, hep-th/0402212 | MR

[4] G. Fiore, J. Wess, Phys. Rev. D, 15 (2007), 105022 ; hep-th/0701078 | DOI | MR

[5] R. F. Striter, A. S. Vaitman, PCT, spin i statistika i vse takoe, Nauka, M., 1966 | MR | Zbl

[6] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR | MR | Zbl

[7] A. S. Wightman, “The choice of test functions in quantum field theory”, Mathematical Analysis and Applications, Part B, Adv. Math. Suppl. Stud., 7b, ed. L. Nachbin, Academic Press, New York–London, 1981, 769–791 | MR | Zbl

[8] N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa, Nucl. Phys. B, 573 (2000), 573–593 | DOI | MR | Zbl

[9] D. J. Gross, A. Hashimoto, N. Itzhaki, Adv. Theor. Math. Phys., 4 (2000), 893–928 | DOI | MR | Zbl

[10] M. A. Solovev, TMF, 147 (2006), 257–269 | DOI | MR

[11] J. M. Gracia-Bondia, J. C. Várilly, J. Math. Phys., 29 (1988), 869–879 | DOI | MR | Zbl

[12] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. Vyp. 2. Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR | MR | Zbl | Zbl

[13] B. S. Mityagin, Tr. MMO, 9 (1960), 317–328. | MR | Zbl

[14] M. A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, Fizmatgiz, M., 1962 | MR | MR | Zbl | Zbl

[15] V. Ya. Fainberg, M. A. Soloviev, Ann. Phys., 113 (1978), 421–447 | DOI | MR | Zbl

[16] G. V. Efimov, Problemy kvantovoi teorii nelokalnykh vzaimodeistvii, Nauka, M., 1985 | MR | Zbl

[17] M. A. Solovev, TMF, 121 (1999), 139–164 | DOI | MR | Zbl

[18] J. W. Moffat, Phys. Lett. B, 506 (2001), 193–199 | DOI | MR | Zbl