Discrete spectrum of a~model operator in Fock space
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 518-527
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a model describing a "truncated" operator (truncated with
respect to the number of particles) acting in the direct sum of zero-,
one-, and two-particle subspaces of a Fock space. Under some natural
conditions on the parameters specifying the model, we prove that the discrete
spectrum is finite.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
discrete spectrum, Fock space, compact operator, continuity in the uniform operator topology, Hilbert–Schmidt operator, Weinberg equation.
                    
                  
                
                
                @article{TMF_2007_152_3_a8,
     author = {T. H. Rasulov},
     title = {Discrete spectrum of a~model operator in {Fock} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {518--527},
     publisher = {mathdoc},
     volume = {152},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/}
}
                      
                      
                    T. H. Rasulov. Discrete spectrum of a~model operator in Fock space. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 518-527. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/
