Discrete spectrum of a model operator in Fock space
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 518-527 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model describing a "truncated" operator (truncated with respect to the number of particles) acting in the direct sum of zero-, one-, and two-particle subspaces of a Fock space. Under some natural conditions on the parameters specifying the model, we prove that the discrete spectrum is finite.
Keywords: discrete spectrum, Fock space, compact operator, continuity in the uniform operator topology, Hilbert–Schmidt operator, Weinberg equation.
@article{TMF_2007_152_3_a8,
     author = {T. H. Rasulov},
     title = {Discrete spectrum of a~model operator in {Fock} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {518--527},
     year = {2007},
     volume = {152},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/}
}
TY  - JOUR
AU  - T. H. Rasulov
TI  - Discrete spectrum of a model operator in Fock space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 518
EP  - 527
VL  - 152
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/
LA  - ru
ID  - TMF_2007_152_3_a8
ER  - 
%0 Journal Article
%A T. H. Rasulov
%T Discrete spectrum of a model operator in Fock space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 518-527
%V 152
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/
%G ru
%F TMF_2007_152_3_a8
T. H. Rasulov. Discrete spectrum of a model operator in Fock space. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 518-527. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/

[1] D. Mattis, Rev. Mod. Phys., 58 (1986), 361–379 | DOI | MR

[2] K. O. Fridrikhs, Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969 | MR | Zbl

[3] V. A. Malyshev, R. A. Minlos, Tr. sem. im. I. G. Petrovskogo, 9 (1983), 63–80 | MR | Zbl

[4] R. A. Minlos, H. Spohn, “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, Amer. Math. Soc. Transl. Ser. 2, 177, AMS, Providence, RI, 1996, 159–193 | MR | Zbl

[5] Yu. V. Zhukov, R. A. Minlos, TMF, 103:1 (1995), 63–81 | DOI | MR | Zbl

[6] S. N. Lakaev, T. Kh. Rasulov, Matem. zametki, 73:4 (2003), 556–564 | DOI | MR | Zbl

[7] S. N. Lakaev, T. Kh. Rasulov, Funkts. analiz i ego prilozh., 37:1 (2003), 81–84 | DOI | MR | Zbl

[8] S. Albeverio, S. N. Lakaev, T. H. Rasulov, On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics, math-ph/0508028 | MR

[9] Zh. I. Abdullaev, S. N. Lakaev, TMF, 111:1 (1997), 94–108 | DOI | MR | Zbl

[10] S. N. Lakaev, M. E. Muminov, TMF, 135:3 (2003), 478–503 | DOI | MR | Zbl

[11] D. R. Yafaev, TMF, 25:2 (1975), 185–195 | DOI | MR | Zbl

[12] V. A. Zorich, Matematicheskii analiz, ch. 2, Nauka, M., 1984 | MR | MR | Zbl | Zbl