Discrete spectrum of a~model operator in Fock space
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 518-527

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model describing a "truncated" operator (truncated with respect to the number of particles) acting in the direct sum of zero-, one-, and two-particle subspaces of a Fock space. Under some natural conditions on the parameters specifying the model, we prove that the discrete spectrum is finite.
Keywords: discrete spectrum, Fock space, compact operator, continuity in the uniform operator topology, Hilbert–Schmidt operator, Weinberg equation.
@article{TMF_2007_152_3_a8,
     author = {T. H. Rasulov},
     title = {Discrete spectrum of a~model operator in {Fock} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {518--527},
     publisher = {mathdoc},
     volume = {152},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/}
}
TY  - JOUR
AU  - T. H. Rasulov
TI  - Discrete spectrum of a~model operator in Fock space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 518
EP  - 527
VL  - 152
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/
LA  - ru
ID  - TMF_2007_152_3_a8
ER  - 
%0 Journal Article
%A T. H. Rasulov
%T Discrete spectrum of a~model operator in Fock space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 518-527
%V 152
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/
%G ru
%F TMF_2007_152_3_a8
T. H. Rasulov. Discrete spectrum of a~model operator in Fock space. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 518-527. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/