@article{TMF_2007_152_3_a8,
author = {T. H. Rasulov},
title = {Discrete spectrum of a~model operator in {Fock} space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {518--527},
year = {2007},
volume = {152},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/}
}
T. H. Rasulov. Discrete spectrum of a model operator in Fock space. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 518-527. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a8/
[1] D. Mattis, Rev. Mod. Phys., 58 (1986), 361–379 | DOI | MR
[2] K. O. Fridrikhs, Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969 | MR | Zbl
[3] V. A. Malyshev, R. A. Minlos, Tr. sem. im. I. G. Petrovskogo, 9 (1983), 63–80 | MR | Zbl
[4] R. A. Minlos, H. Spohn, “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, Amer. Math. Soc. Transl. Ser. 2, 177, AMS, Providence, RI, 1996, 159–193 | MR | Zbl
[5] Yu. V. Zhukov, R. A. Minlos, TMF, 103:1 (1995), 63–81 | DOI | MR | Zbl
[6] S. N. Lakaev, T. Kh. Rasulov, Matem. zametki, 73:4 (2003), 556–564 | DOI | MR | Zbl
[7] S. N. Lakaev, T. Kh. Rasulov, Funkts. analiz i ego prilozh., 37:1 (2003), 81–84 | DOI | MR | Zbl
[8] S. Albeverio, S. N. Lakaev, T. H. Rasulov, On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics, math-ph/0508028 | MR
[9] Zh. I. Abdullaev, S. N. Lakaev, TMF, 111:1 (1997), 94–108 | DOI | MR | Zbl
[10] S. N. Lakaev, M. E. Muminov, TMF, 135:3 (2003), 478–503 | DOI | MR | Zbl
[11] D. R. Yafaev, TMF, 25:2 (1975), 185–195 | DOI | MR | Zbl
[12] V. A. Zorich, Matematicheskii analiz, ch. 2, Nauka, M., 1984 | MR | MR | Zbl | Zbl