Finiteness of the~number of eigenvalues of the~two-particle Schr\"odinger operator on a~lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 502-517

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the two-particle Schrödinger operator $H(k)$ on the $\nu$-dimensional lattice $\mathbb{Z}^{\nu}$ and prove that the number of negative eigenvalues of $H(k)$ is finite for a wide class of potentials $\hat{v}$.
Keywords: Hamiltonian, Schrödinger operator, discrete spectrum, Birman–Schwinger principle.
@article{TMF_2007_152_3_a7,
     author = {Zh. I. Abdullaev and I. A. Ikromov},
     title = {Finiteness of the~number of eigenvalues of the~two-particle {Schr\"odinger} operator on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {502--517},
     publisher = {mathdoc},
     volume = {152},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a7/}
}
TY  - JOUR
AU  - Zh. I. Abdullaev
AU  - I. A. Ikromov
TI  - Finiteness of the~number of eigenvalues of the~two-particle Schr\"odinger operator on a~lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 502
EP  - 517
VL  - 152
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a7/
LA  - ru
ID  - TMF_2007_152_3_a7
ER  - 
%0 Journal Article
%A Zh. I. Abdullaev
%A I. A. Ikromov
%T Finiteness of the~number of eigenvalues of the~two-particle Schr\"odinger operator on a~lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 502-517
%V 152
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a7/
%G ru
%F TMF_2007_152_3_a7
Zh. I. Abdullaev; I. A. Ikromov. Finiteness of the~number of eigenvalues of the~two-particle Schr\"odinger operator on a~lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 502-517. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a7/