Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 502-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the two-particle Schrödinger operator $H(k)$ on the $\nu$-dimensional lattice $\mathbb{Z}^{\nu}$ and prove that the number of negative eigenvalues of $H(k)$ is finite for a wide class of potentials $\hat{v}$.
Keywords: Hamiltonian, Schrödinger operator, discrete spectrum, Birman–Schwinger principle.
@article{TMF_2007_152_3_a7,
     author = {Zh. I. Abdullaev and I. A. Ikromov},
     title = {Finiteness of the~number of eigenvalues of the~two-particle {Schr\"odinger} operator on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {502--517},
     year = {2007},
     volume = {152},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a7/}
}
TY  - JOUR
AU  - Zh. I. Abdullaev
AU  - I. A. Ikromov
TI  - Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 502
EP  - 517
VL  - 152
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a7/
LA  - ru
ID  - TMF_2007_152_3_a7
ER  - 
%0 Journal Article
%A Zh. I. Abdullaev
%A I. A. Ikromov
%T Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 502-517
%V 152
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a7/
%G ru
%F TMF_2007_152_3_a7
Zh. I. Abdullaev; I. A. Ikromov. Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 502-517. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a7/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl | Zbl

[2] Sh. S. Mamatov, R. A. Minlos, TMF, 79 (1989), 163–179 | DOI | MR

[3] R. A. Minlos, A. I. Mogilner, “Some problems conserning spectra of lattice models”, Schrödinger Operators, Standard and Nonstandard (Dubna, USSR, 1988), eds. P. Exner, P. Seba, World Sci. Publ., Teaneck, NJ, 1989, 243–257 | MR | Zbl

[4] Zh. I. Abdullaev, UzMZh, 2005, no. 1, 3–11 | MR

[5] Zh. I. Abdullaev, Dokl. AN RUz, 2005, no. 4, 5–9

[6] Zh. I. Abdullaev, S. N. Lakaev, TMF, 136 (2003), 231–245 | DOI | MR | Zbl

[7] P. A. Faria da Viega, L. Ioriatti, M. O'Carroll, Phys. Rev. E (3), 66 (2002), 016130 | DOI | MR

[8] S. Albeverio, S. N. Lakaev, J. I. Abdullaev, On the spectral properties of two-particle discrete Schrödinger operators, Preprint. SFB 611. No 170, Univ. Bonn, 2004

[9] Zh. I. Abdullaev, “Asimptotika sobstvennykh znachenii dvukhchastichnogo operatora Shredingera na reshetke”, Sbornik trudov mezhdunarodnoi konferentsii “Sovremennye problemy matematicheskoi fiziki i informatsionnykh tekhnologii”, t. 1 (18–24 aprelya 2005, g. Tashkent), 19–23 | Zbl

[10] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl

[11] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR | MR | Zbl | Zbl

[12] E. M. Nikishin, Tr. sem. im. I. G. Petrovskogo, 10 (1984), 3–77 | MR | Zbl

[13] Zh. I. Abdullaev, TMF, 147 (2006), 47–57 | DOI | MR | Zbl

[14] L. D. Faddeev, Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Tr. MIAN, 69, Izd-vo AN SSSR, M.–L., 1963 | MR | Zbl

[15] I. A. Ikromov, F. Sharipov, Funkts. analiz i ego prilozh., 32:1 (1998), 63–65 | DOI | MR | Zbl

[16] S. Lojasiewicz, Studia Math., 18 (1959), 87–136 | MR | Zbl

[17] H. Schulz, Indiana Univ. Math. J., 40 (1990), 1267–1275 | DOI | MR | Zbl

[18] V. A. Vasilev, Funkts. analiz i ego prilozh., 11:3 (1977), 1–11 | MR | Zbl

[19] J. C. Tougeron, Ann. Inst. Fourier (Grenoble), 18:1 (1968), 177–240 | DOI | MR | Zbl

[20] B. V. Shabat, Vvedenie v kompleksnyi analiz. Ch. II. Funktsii neskolkikh peremennykh, Nauka, M., 1985 | MR | MR | Zbl | Zbl