Generalized Bell inequality and a method for its verification
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 488-501 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the reduced density matrix of the two-particle spin state to construct a generalized Bell–Clauser–Horne–Shimony–Holt inequality. For each specific state and under a special choice of the vectors $\vec a$, $\vec b$, $\vec c$, and $\vec d$, this inequality becomes an exact equality. We show how such vectors can be found using the reduced density matrix. Both sides of this equality have a specific numerical value. We indicate the connection of this number with the measure of entanglement of the two-particle spin state.
Keywords: quantum mechanics, entangled state, density matrix, Bell inequality.
@article{TMF_2007_152_3_a6,
     author = {V. A. Andreev},
     title = {Generalized {Bell} inequality and a~method for its verification},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {488--501},
     year = {2007},
     volume = {152},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a6/}
}
TY  - JOUR
AU  - V. A. Andreev
TI  - Generalized Bell inequality and a method for its verification
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 488
EP  - 501
VL  - 152
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a6/
LA  - ru
ID  - TMF_2007_152_3_a6
ER  - 
%0 Journal Article
%A V. A. Andreev
%T Generalized Bell inequality and a method for its verification
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 488-501
%V 152
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a6/
%G ru
%F TMF_2007_152_3_a6
V. A. Andreev. Generalized Bell inequality and a method for its verification. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 488-501. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a6/

[1] J. S. Bell, Physics, 1 (1964), 195

[2] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, Phys. Rev. Lett., 23 (1969), 880 | DOI

[3] S. J. Freedman, J. F. Clauser, Phys. Rev. Lett., 28 (1972), 938 | DOI

[4] A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett., 47 (1981), 460 | DOI

[5] A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett., 49 (1982), 91 | DOI

[6] A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett., 49 (1982), 1804 | DOI | MR

[7] Z. Y. Ou, L. Mandel, Phys. Rev. Lett., 61 (1988), 50 | DOI | MR

[8] T. E. Kiess, Y. H. Shih, A. V. Sergienko, C. O. Alley, Phys. Rev. Lett., 71 (1993), 3893 | DOI

[9] V. A. Andreev, V. I. Manko, TMF, 140 (2004), 284 | DOI | MR | Zbl

[10] I. V. Volovich, Bell's theorem and locality in space, quant-ph/0012010

[11] L. Accardi, M. Regoli, Locality and Bell's inequality, quant-ph/0007005 | MR

[12] M. B. Menskii, Kvantovye izmereniya i dekogerentsiya, Fizmatlit, M., 2001 | MR | MR | Zbl

[13] A. S. Kholevo, Vvedenie v kvantovuyu teoriyu informatsii, Sovrem. matem. fizika. Problemy i metody, 5, MTsNMO, M., 2002

[14] A. Khrennikov, Found. Phys., 32 (2002), 1159 | DOI | MR

[15] A. Khrennikov, I. Volovich, Local realism, contextualism and loopholes in Bell's experiments, quant-ph/0212127 | MR

[16] A. Yu. Khrennikov, Nekolmogorovskie teorii veroyatnostei i kvantovaya fizika, Fizmatlit, M., 2003 | Zbl

[17] A. Khrennikov, I. V. Volovich, “Quantum nonlocality, EPR model, and Bell's theorem”, Proc. III Int. Sakharov Conf. on Physics, vol. 2 (Moscow, Russia, 2002), eds. A. Semikhatov, M. Vasiliev, V. Zaikin, World Sci., Singapore, 2003, 260

[18] V. A. Andreev, V. I. Man'ko, “The quantum tomography representation of Bell-CHSH inequalities”, Quantum Theory: Reconsideration of Foundations – 2 (Växjö, Sweden, 2003), Math. Model. Phys. Eng. Cogn. Sci., 10, ed. A. Khrennikov, Växjö Univ. Press, Växjö, 2004, 47 | MR

[19] V. A. Andreev, V. I. Manko, O. V. Manko, E. V. Schukin, TMF, 146 (2006), 172 | DOI | MR | Zbl

[20] V. A. Andreev, V. I. Manko, Pisma v ZhETF, 72 (2000), 130 | DOI

[21] V. A. Andreev, V. I. Man'ko, Phys. Lett. A, 281 (2001), 278 | DOI | MR | Zbl

[22] R. F. Werner, Phys. Rev. A, 40 (1989), 4277 | DOI