$N=1$ supersymmetric conformal block recursion relations
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 476-487 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present explicit recursion relations for the four-point superconformal block functions that are essentially particular contributions of the given conformal class to the four-point correlation function. The approach is based on the analytic properties of the superconformal blocks as functions of the conformal dimensions and the central charge of the superconformal algebra. We compare the results with the explicit analytic expressions obtained for special parameter values corresponding to the truncated operator product expansion. These recursion relations are an efficient tool for numerically studying the four-point correlation function in superconformal field theory in the framework of the bootstrap approach, similar to that in the case of the purely conformal symmetry.
Keywords: $N{=}1$ superconformal field theory, four-point conformal block function, recursion relation.
@article{TMF_2007_152_3_a5,
     author = {V. A. Belavin},
     title = {$N=1$ supersymmetric conformal block recursion relations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {476--487},
     year = {2007},
     volume = {152},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a5/}
}
TY  - JOUR
AU  - V. A. Belavin
TI  - $N=1$ supersymmetric conformal block recursion relations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 476
EP  - 487
VL  - 152
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a5/
LA  - ru
ID  - TMF_2007_152_3_a5
ER  - 
%0 Journal Article
%A V. A. Belavin
%T $N=1$ supersymmetric conformal block recursion relations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 476-487
%V 152
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a5/
%G ru
%F TMF_2007_152_3_a5
V. A. Belavin. $N=1$ supersymmetric conformal block recursion relations. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 476-487. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a5/

[1] A. B. Zamolodchikov, Al. B. Zamolodchikov, Nucl. Phys. B, 477 (1996), 577–605 ; Structure constants and conformal bootstrap in Liouville field theory, hep-th/9506136 | DOI | MR | Zbl

[2] H. Dorn, H.-J. Otto, Nucl. Phys. B, 429 (1994), 375–388 ; hep-th/9403141 | DOI | MR | Zbl

[3] J. Teschner, Class. Quantum Grav., 18 (2001), R153–R222 ; hep-th/0104158 | DOI | MR | Zbl

[4] Al. Zamolodchikov, Internat. J. Modern Phys. A, 19:suppl2 (2004), 510–523 ; hep-th/0312279 | DOI | MR | Zbl

[5] Al. B. Zamolodchikov, TMF, 142 (2005), 218–234 ; hep-th/0505063 | DOI | MR | Zbl

[6] A. A. Belavin, Al. B. Zamolodchikov, TMF, 147 (2006), 339–371 | DOI | MR | Zbl

[7] A. M. Polyakov, Phys. Lett. B, 103 (1981), 211–213 | DOI | MR

[8] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl

[9] Al. Zamolodchikov, Commun. Math. Phys., 96 (1984), 419–422 | DOI | MR

[10] Al. B. Zamolodchikov, R. Pogosyan, YaF, 47 (1988), 1461–1474 | MR

[11] L. Alvarez-Gaumé, Ph. Zaugg, Ann. Phys., 215 (1992), 171–230 ; hep-th/9109050 | DOI | MR | Zbl

[12] V. G. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | MR | Zbl | Zbl

[13] A. A. Belavin, Al. B. Zamolodchikov, Pisma v ZhETF, 84 (2006), 496–502 ; hep-th/0610316 | DOI

[14] A. B. Zamolodchikov, Al. B. Zamolodchikov, Conformal field theory and 2-D critical phenomena. Part III. Conformal bootstrap and degenerate representations of conformal algebra, ITEP-90-31, 1990 | MR

[15] Al. B. Zamolodchikov, TMF, 73 (1987), 103–110 | DOI | MR